Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200470585> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4200470585 abstract "Ground-penetrating radar (GPR) is a nondestructive tool that has gained popularity after giving promising results in different areas—such as utility engineering, transportation engineering, civil engineering, and geology—with relatively low cost. Even as the number of applications for GPR increases, the interpretation of GPR data is still challenging, in part due to varying ground conditions. Researchers are continuously working on the development of new analysis methods to address these challenges. Computer vision algorithms, including neural networks and convolution neural networks, have advanced significantly over the past decade, and researchers have utilized these algorithms to extract information from GPR images and thus improve the interpretation of GPR data. This paper presents a review of literature that employs computer vision and machine learning algorithms, such as YOLO V3, Viola–Jones, and AlexNet, for automatic extraction of information from GPR images. The uptake in the use of automatic detection algorithms for GPR is increased by the ability to rapidly quantify and locate buried targets that previously could only be identified by professionals with a high level of expertise and training." @default.
- W4200470585 created "2021-12-31" @default.
- W4200470585 creator A5025780346 @default.
- W4200470585 creator A5026902572 @default.
- W4200470585 creator A5071635020 @default.
- W4200470585 date "2022-05-01" @default.
- W4200470585 modified "2023-09-29" @default.
- W4200470585 title "Review of Machine Learning Algorithms for Automatic Detection of Underground Objects in GPR Images" @default.
- W4200470585 cites W1536680647 @default.
- W4200470585 cites W1591029852 @default.
- W4200470585 cites W1787135779 @default.
- W4200470585 cites W1861492603 @default.
- W4200470585 cites W1967903496 @default.
- W4200470585 cites W1974302439 @default.
- W4200470585 cites W1978543941 @default.
- W4200470585 cites W1995341919 @default.
- W4200470585 cites W2000335122 @default.
- W4200470585 cites W2022799185 @default.
- W4200470585 cites W2030011430 @default.
- W4200470585 cites W2035752142 @default.
- W4200470585 cites W2035808317 @default.
- W4200470585 cites W2073046487 @default.
- W4200470585 cites W2074446380 @default.
- W4200470585 cites W2079073363 @default.
- W4200470585 cites W2087394381 @default.
- W4200470585 cites W2092972248 @default.
- W4200470585 cites W2094505658 @default.
- W4200470585 cites W2095905764 @default.
- W4200470585 cites W2108598243 @default.
- W4200470585 cites W2119018277 @default.
- W4200470585 cites W2123665156 @default.
- W4200470585 cites W2130075347 @default.
- W4200470585 cites W2155545482 @default.
- W4200470585 cites W2161877343 @default.
- W4200470585 cites W2163539508 @default.
- W4200470585 cites W2394919951 @default.
- W4200470585 cites W2512541780 @default.
- W4200470585 cites W2521901407 @default.
- W4200470585 cites W2767072113 @default.
- W4200470585 cites W2884367402 @default.
- W4200470585 cites W2963456480 @default.
- W4200470585 cites W2965232632 @default.
- W4200470585 cites W2973687803 @default.
- W4200470585 cites W2989278094 @default.
- W4200470585 cites W3005898469 @default.
- W4200470585 cites W3010605964 @default.
- W4200470585 cites W301674672 @default.
- W4200470585 cites W3097096317 @default.
- W4200470585 cites W3099319035 @default.
- W4200470585 cites W4233738868 @default.
- W4200470585 cites W852619316 @default.
- W4200470585 doi "https://doi.org/10.1061/(asce)ps.1949-1204.0000632" @default.
- W4200470585 hasPublicationYear "2022" @default.
- W4200470585 type Work @default.
- W4200470585 citedByCount "3" @default.
- W4200470585 countsByYear W42004705852022 @default.
- W4200470585 countsByYear W42004705852023 @default.
- W4200470585 crossrefType "journal-article" @default.
- W4200470585 hasAuthorship W4200470585A5025780346 @default.
- W4200470585 hasAuthorship W4200470585A5026902572 @default.
- W4200470585 hasAuthorship W4200470585A5071635020 @default.
- W4200470585 hasConcept C11413529 @default.
- W4200470585 hasConcept C119857082 @default.
- W4200470585 hasConcept C154945302 @default.
- W4200470585 hasConcept C41008148 @default.
- W4200470585 hasConcept C50644808 @default.
- W4200470585 hasConcept C554190296 @default.
- W4200470585 hasConcept C71813955 @default.
- W4200470585 hasConcept C76155785 @default.
- W4200470585 hasConcept C81363708 @default.
- W4200470585 hasConceptScore W4200470585C11413529 @default.
- W4200470585 hasConceptScore W4200470585C119857082 @default.
- W4200470585 hasConceptScore W4200470585C154945302 @default.
- W4200470585 hasConceptScore W4200470585C41008148 @default.
- W4200470585 hasConceptScore W4200470585C50644808 @default.
- W4200470585 hasConceptScore W4200470585C554190296 @default.
- W4200470585 hasConceptScore W4200470585C71813955 @default.
- W4200470585 hasConceptScore W4200470585C76155785 @default.
- W4200470585 hasConceptScore W4200470585C81363708 @default.
- W4200470585 hasIssue "2" @default.
- W4200470585 hasLocation W42004705851 @default.
- W4200470585 hasOpenAccess W4200470585 @default.
- W4200470585 hasPrimaryLocation W42004705851 @default.
- W4200470585 hasRelatedWork W2337926734 @default.
- W4200470585 hasRelatedWork W2978290780 @default.
- W4200470585 hasRelatedWork W3027997911 @default.
- W4200470585 hasRelatedWork W4225307033 @default.
- W4200470585 hasRelatedWork W4287776258 @default.
- W4200470585 hasRelatedWork W4312501200 @default.
- W4200470585 hasRelatedWork W4313050734 @default.
- W4200470585 hasRelatedWork W4320802194 @default.
- W4200470585 hasRelatedWork W4366224123 @default.
- W4200470585 hasRelatedWork W1629725936 @default.
- W4200470585 hasVolume "13" @default.
- W4200470585 isParatext "false" @default.
- W4200470585 isRetracted "false" @default.
- W4200470585 workType "article" @default.