Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200477746> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4200477746 endingPage "14" @default.
- W4200477746 startingPage "1" @default.
- W4200477746 abstract "The gray contrast between the liver and other soft tissues is low, and the boundary is not obvious. As a result, it is still a challenging task to accurately segment the liver from CT images. In recent years, methods of machine learning have become a research hotspot in the field of medical image segmentation because they can effectively use the gold standard personalized features of the liver from different data. However, machine learning usually requires a large number of data samples to train the model and improve the accuracy of medical image segmentation. This paper proposed a method for liver segmentation based on the Gabor dictionary of sparse image blocks with prior boundaries. This method reduced the number of samples by selecting the test sample set within the initial boundary area of the liver. The Gabor feature was extracted and the query dictionary was created, and the sparse coefficient was calculated to obtain the boundary information of the liver. By optimizing the reconstruction error and filling holes, a smooth liver boundary was obtained. The proposed method was tested on the MICCAI 2007 dataset and ISBI2017 dataset, and five measures were used to evaluate the results. The proposed method was compared with methods for liver segmentation proposed in recent years. The experimental results show that this method can improve the accuracy of liver segmentation and effectively repair the discontinuity and local overlap of segmentation results." @default.
- W4200477746 created "2021-12-31" @default.
- W4200477746 creator A5018465248 @default.
- W4200477746 creator A5038637903 @default.
- W4200477746 creator A5046515740 @default.
- W4200477746 creator A5069430166 @default.
- W4200477746 creator A5088167656 @default.
- W4200477746 date "2021-12-09" @default.
- W4200477746 modified "2023-10-17" @default.
- W4200477746 title "Gabor Dictionary of Sparse Image Patches Selected in Prior Boundaries for 3D Liver Segmentation in CT Images" @default.
- W4200477746 cites W1984876200 @default.
- W4200477746 cites W1988626696 @default.
- W4200477746 cites W2029115635 @default.
- W4200477746 cites W2102336461 @default.
- W4200477746 cites W2129663601 @default.
- W4200477746 cites W2160547390 @default.
- W4200477746 cites W2266495241 @default.
- W4200477746 cites W2321272510 @default.
- W4200477746 cites W2467112534 @default.
- W4200477746 cites W2474352580 @default.
- W4200477746 cites W2510319095 @default.
- W4200477746 cites W2511970846 @default.
- W4200477746 cites W2578257991 @default.
- W4200477746 cites W2582058104 @default.
- W4200477746 cites W2590099728 @default.
- W4200477746 cites W2769591697 @default.
- W4200477746 cites W2796630897 @default.
- W4200477746 cites W2803333369 @default.
- W4200477746 cites W2805741438 @default.
- W4200477746 cites W2806456004 @default.
- W4200477746 cites W2888570268 @default.
- W4200477746 cites W2964227007 @default.
- W4200477746 cites W2979524796 @default.
- W4200477746 cites W2980258057 @default.
- W4200477746 cites W2989504049 @default.
- W4200477746 cites W3105373267 @default.
- W4200477746 doi "https://doi.org/10.1155/2021/5552864" @default.
- W4200477746 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34925736" @default.
- W4200477746 hasPublicationYear "2021" @default.
- W4200477746 type Work @default.
- W4200477746 citedByCount "0" @default.
- W4200477746 crossrefType "journal-article" @default.
- W4200477746 hasAuthorship W4200477746A5018465248 @default.
- W4200477746 hasAuthorship W4200477746A5038637903 @default.
- W4200477746 hasAuthorship W4200477746A5046515740 @default.
- W4200477746 hasAuthorship W4200477746A5069430166 @default.
- W4200477746 hasAuthorship W4200477746A5088167656 @default.
- W4200477746 hasBestOaLocation W42004777461 @default.
- W4200477746 hasConcept C124504099 @default.
- W4200477746 hasConcept C134306372 @default.
- W4200477746 hasConcept C153180895 @default.
- W4200477746 hasConcept C154945302 @default.
- W4200477746 hasConcept C31972630 @default.
- W4200477746 hasConcept C33923547 @default.
- W4200477746 hasConcept C41008148 @default.
- W4200477746 hasConcept C62354387 @default.
- W4200477746 hasConcept C89600930 @default.
- W4200477746 hasConceptScore W4200477746C124504099 @default.
- W4200477746 hasConceptScore W4200477746C134306372 @default.
- W4200477746 hasConceptScore W4200477746C153180895 @default.
- W4200477746 hasConceptScore W4200477746C154945302 @default.
- W4200477746 hasConceptScore W4200477746C31972630 @default.
- W4200477746 hasConceptScore W4200477746C33923547 @default.
- W4200477746 hasConceptScore W4200477746C41008148 @default.
- W4200477746 hasConceptScore W4200477746C62354387 @default.
- W4200477746 hasConceptScore W4200477746C89600930 @default.
- W4200477746 hasFunder F4320322163 @default.
- W4200477746 hasLocation W42004777461 @default.
- W4200477746 hasLocation W42004777462 @default.
- W4200477746 hasLocation W42004777463 @default.
- W4200477746 hasLocation W42004777464 @default.
- W4200477746 hasOpenAccess W4200477746 @default.
- W4200477746 hasPrimaryLocation W42004777461 @default.
- W4200477746 hasRelatedWork W1507266234 @default.
- W4200477746 hasRelatedWork W1669643531 @default.
- W4200477746 hasRelatedWork W2110230079 @default.
- W4200477746 hasRelatedWork W2117664411 @default.
- W4200477746 hasRelatedWork W2117933325 @default.
- W4200477746 hasRelatedWork W2122581818 @default.
- W4200477746 hasRelatedWork W2159066190 @default.
- W4200477746 hasRelatedWork W2549936415 @default.
- W4200477746 hasRelatedWork W2739874619 @default.
- W4200477746 hasRelatedWork W1967061043 @default.
- W4200477746 hasVolume "2021" @default.
- W4200477746 isParatext "false" @default.
- W4200477746 isRetracted "false" @default.
- W4200477746 workType "article" @default.