Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200480410> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4200480410 endingPage "7" @default.
- W4200480410 startingPage "1" @default.
- W4200480410 abstract "No AccessTechnical NotesExperimentally Based CLEAN-SC Array Pairing Method for Distributed Aeroacoustic SourcesElias J. G. Arcondoulis, Yu Liu, Pengwei Xu, Qing Li, Renke Wei, Yannian Yang and Nanshu ChenElias J. G. Arcondoulis https://orcid.org/0000-0002-3791-395XSouthern University of Science and Technology, 518055 Shenzhen, Guangdong, People’s Republic of China*Research Assistant Professor, Department of Mechanics and Aerospace Engineering; also Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, 621000 Mianyang, Sichuan, People’s Republic of China. Senior Member AIAA.Search for more papers by this author, Yu Liu https://orcid.org/0000-0003-1112-1863Southern University of Science and Technology, 518055 Shenzhen, Guangdong, People’s Republic of China†Associate Professor, Department of Mechanics and Aerospace Engineering; also Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, 621000 Mianyang, Sichuan, People’s Republic of China; . Senior Member AIAA (Corresponding Author).Search for more papers by this author, Pengwei XuSouthern University of Science and Technology, 518055 Shenzhen, Guangdong, People’s Republic of China‡Research Assistant, Department of Mechanics and Aerospace Engineering.Search for more papers by this author, Qing LiSouthern University of Science and Technology, 518055 Shenzhen, Guangdong, People’s Republic of China§Masters Student, Department of Mechanics and Aerospace Engineering.Search for more papers by this author, Renke WeiSouthern University of Science and Technology, 518055 Shenzhen, Guangdong, People’s Republic of China¶Ph.D. Candidate, Department of Mechanics and Aerospace Engineering.Search for more papers by this author, Yannian YangSouthern University of Science and Technology, 518055 Shenzhen, Guangdong, People’s Republic of China**Research Assistant Professor, Department of Mechanics and Aerospace Engineering. Member AIAA.Search for more papers by this author and Nanshu Chen https://orcid.org/0000-0002-6777-4604Northwestern Polytechnical University, 710129 Xi’an, Shaanxi, People’s Republic of China††Ph.D. Candidate, School of Power and Energy.Search for more papers by this authorPublished Online:22 Dec 2021https://doi.org/10.2514/1.J061270SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Chiariotti P., Martarelli M. and Castellini P., “Acoustic Beamforming for Noise Source Localization—Reviews, Methodology and Applications,” Mechanical Systems and Signal Processing, Vol. 120, April 2019, pp. 422–448. https://doi.org/10.1016/j.ymssp.2018.09.019 CrossrefGoogle Scholar[2] Merino-Martnez R., Sijtsma P., Snellen M., Ahlefeldt T., Antoni J., Bahr C., Blacodon D., Ernst D., Finez A., Funke S. and Geyer T. F., “A Review of Acoustic Imaging Methods Using Phased Microphone Arrays,” CEAS Aeronautical Journal, Vol. 10, No. 1, 2019, pp. 197–230. Google Scholar[3] Venkatesh S. R., Polak D. R. and Narayanan S., “Beamforming Algorithm for Distributed Source Localization and Its Application to Jet Noise,” AIAA Journal, Vol. 41, No. 7, 2003, pp. 1238–1246. https://doi.org/10.2514/2.2092 LinkGoogle Scholar[4] Brooks T. F. and Humphreys W. M., “A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays,” Journal of Sound and Vibration, Vol. 294, No. 4, 2006, pp. 856–879. https://doi.org/10.1016/j.jsv.2005.12.046 CrossrefGoogle Scholar[5] Fleury V. and Malbéqui P., “Slat Noise Assessment from Airbus A340 Flyover Phased-Array Microphone Measurements,” AIAA Journal, Vol. 51, No. 7, 2013, pp. 1667–1674. https://doi.org/10.2514/1.J052054 LinkGoogle Scholar[6] Porteous R., Prime Z., Doolan C. J., Moreau D. J. and Valeau V., “Three-Dimensional Beamforming of Dipolar Aeroacoustic Sources,” Journal of Sound and Vibration, Vol. 355, Oct. 2015, pp. 117–134. https://doi.org/10.1016/j.jsv.2015.06.030 CrossrefGoogle Scholar[7] Liu Y., Quayle A. R., Dowling A. P. and Sijtsma P., “Beamforming Correction for Dipole Measurement Using Two-Dimensional Microphone Arrays,” Journal of the Acoustical Society of America, Vol. 124, No. 1, 2008, pp. 182–191. https://doi.org/10.1121/1.2931950 CrossrefGoogle Scholar[8] Huang X., Bai L., Vinogradov I. and Peers E., “Adaptive Beamforming for Array Signal Processing in Aeroacoustic Measurements,” Journal of the Acoustical Society of America, Vol. 131, No. 3, 2012, pp. 2152–2161. https://doi.org/10.1121/1.3682041 CrossrefGoogle Scholar[9] Ravetta P. A., Burdisso R. A. and Ng W. F., “Noise Source Localization and Optimization of Phased-Array Results,” AIAA Journal, Vol. 47, No. 11, 2009, pp. 2520–2533. https://doi.org/10.2514/1.38073 LinkGoogle Scholar[10] Sijtsma P., “CLEAN Based on Spatial Source Coherence,” International Journal of Aeroacoustics, Vol. 6, No. 4, 2007, pp. 357–374. https://doi.org/10.1260/147547207783359459 CrossrefGoogle Scholar[11] Sijtsma P., Merino-Martinez R., Malgoezar A. M. and Snellen M., “High-Resolution CLEAN-SC: Theory and Experimental Validation,” International Journal of Aeroacoustics, Vol. 16, Nos. 4–5, 2017, pp. 274–298. https://doi.org/10.1177/1475472X17713034 CrossrefGoogle Scholar[12] Suzuki T., “DAMAS2 Using a Point-Spread Function Weakly Varying in Space,” AIAA Journal, Vol. 48, No. 9, 2010, pp. 2165–2169. https://doi.org/10.2514/1.J050462 LinkGoogle Scholar[13] Ma W. and Liu X., “DAMAS with Compression Computational Grid for Acoustic Source Mapping,” Journal of Sound and Vibration, Vol. 410, Dec. 2017, pp. 473–484. https://doi.org/10.1016/j.jsv.2017.03.027 CrossrefGoogle Scholar[14] Arcondoulis E. J., Liu Y., Xu P. and Chen N., “An Array Pairing Method for Localizing Distributed Sources by Acoustic Beamforming,” Journal of the Acoustical Society of America, Vol. 147, No. 1, 2020, pp. EL7–EL12. https://doi.org/10.1121/10.0000496 Google Scholar[15] Arcondoulis E. and Liu Y., “Adaptive Array Reduction Method for Acoustic Beamforming Array Designs,” Journal of the Acoustical Society of America, Vol. 145, No. 2, 2019, pp. EL156–EL160. https://doi.org/10.1121/1.5090191 CrossrefGoogle Scholar[16] Bjelić M., Stanojević M., Šumarac Pavlović D. and Mijić M., “Microphone Array Geometry Optimization for Traffic Noise Analysis,” Journal of the Acoustical Society of America, Vol. 141, No. 5, 2017, pp. 3101–3104. https://doi.org/10.1121/1.4982694 CrossrefGoogle Scholar[17] Xu P., Arcondoulis E. J. G. and Liu Y., “Acoustic Source Imaging Using Densely Connected Convolutional Networks,” Mechanical Systems and Signal Processing, Vol. 151, April 2021, Paper 107370. https://doi.org/10.1016/j.ymssp.2020.107370 Google Scholar[18] Arcondoulis E., Doolan C., Brooks L. and Zander A., “On the Generation of Airfoil Tonal Noise at Zero Angle of Attack and Low to Moderate Reynolds Number,” 18th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2012-2060, June 2012. Google Scholar[19] Humphreys W., Brooks T., Hunter W. and Meadows K., “Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements,” 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 1998-0471, Jan. 1998. Google Scholar[20] Arcondoulis E., Liu Y., Xu P. and Chen N., “Application of the Adaptive Array Reduction Method for Offset Acoustic Source Localisation,” Journal of Sound and Vibration, Vol. 478, July 2020, Paper 115358. Google Scholar[21] Arcondoulis E. and Liu Y., “An Iterative Microphone Removal Method for Acoustic Beamforming Array Design,” Journal of Sound and Vibration, Vol. 442, March 2019, pp. 552–571. https://doi.org/10.1016/j.jsv.2018.11.005 CrossrefGoogle Scholar[22] Welch P., “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms,” IEEE Transactions on Audio and Electroacoustics, Vol. 15, No. 2, 1967, pp. 70–73. https://doi.org/10.1109/TAU.1967.1161901 CrossrefGoogle Scholar[23] Nash E. C., Lowson M. V. and McAlpine A., “Boundary-Layer Instability Noise on Aerofoils,” Journal of Fluid Mechanics, Vol. 382, March 1999, pp. 27–61. https://doi.org/10.1017/S002211209800367X CrossrefGoogle Scholar[24] Chong T. P. and Joseph P., “‘Ladder’ Structure in Tonal Noise Generated by Laminar Flow Around an Airfoil,” Journal of the Acoustical Society of America, Vol. 131, No. 6, 2012, pp. EL461–EL467. https://doi.org/10.1121/1.4710952 CrossrefGoogle Scholar[25] Arcondoulis E., Doolan C. J., Zander A. C., Brooks L. A. and Liu Y., “An Investigation of Airfoil Dual Acoustic Feedback Mechanisms at Low-to-Moderate Reynolds Number,” Journal of Sound and Vibration, Vol. 460, Nov. 2019, Paper 114887. https://doi.org/10.1016/j.jsv.2019.114887 Google Scholar[26] Yang Y., Pröbsting S., Liu Y., Zhang H., Li C. and Li Y., “Effect of Dual Vortex Shedding on Airfoil Tonal Noise Generation,” Physics of Fluids, Vol. 33, No. 7, 2021, Paper 075102. https://doi.org/10.1063/5.0050002 Google Scholar[27] Brooks T. F., Marcolini M. A. and Pope D. S., “Airfoil Trailing-Edge Flow Measurements,” AIAA Journal, Vol. 24, No. 8, 1986, pp. 1245–1251. https://doi.org/10.2514/3.9426 LinkGoogle Scholar[28] Geyer T., Sarradj E. and Fritzsche C., “Measurement of the Noise Generation at the Trailing Edge of Porous Airfoils,” Experiments in Fluids, Vol. 48, No. 2, 2010, pp. 291–308. https://doi.org/10.1007/s00348-009-0739-x CrossrefGoogle Scholar[29] Sarradj E., “A Fast Signal Subspace Approach for the Determination of Absolute Levels from Phased Microphone Array Measurements,” Journal of Sound and Vibration, Vol. 329, No. 9, 2010, pp. 1553–1569. https://doi.org/10.1016/j.jsv.2009.11.009 CrossrefGoogle Scholar[30] Arcondoulis E. J., Liu Y., Xu P., Li Q., Wei R., Yang Y. and Chen N., “Experimental Application of an Acoustic Beamforming Array Pairing Method Using CLEAN-SC,” Proceedings of the AIAA SciTech 2021 Forum, AIAA Paper 2021-0214, Jan. 2021. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 60, Number 4April 2022 CrossmarkInformationCopyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAntennasBoundary LayersCommunication SystemCommunication Technology and EquipmentComputing, Information, and CommunicationData AcquisitionFlow RegimesFluid DynamicsFluid Flow PropertiesSignal ProcessingVortex DynamicsWind Tunnels KeywordsAngle of AttackPower Spectral DensityNACA 0012Wind Tunnel TestsBand Pass FilterKinematic ViscosityAdaptive ArraysUniform FlowShear LayersData Acquisition SystemAcknowledgmentsThis research was supported by the National Natural Science Foundation of China (grant numbers 11772146 and 92052105) and the Aerodynamic Noise Control Laboratory of China Aerodynamics Research and Development Center (grant number ANCL20200102).PDF Received10 September 2021Accepted19 November 2021Published online22 December 2021" @default.
- W4200480410 created "2021-12-31" @default.
- W4200480410 creator A5008285031 @default.
- W4200480410 creator A5019338559 @default.
- W4200480410 creator A5031706084 @default.
- W4200480410 creator A5033424831 @default.
- W4200480410 creator A5050231361 @default.
- W4200480410 creator A5053780153 @default.
- W4200480410 creator A5072645834 @default.
- W4200480410 date "2021-12-22" @default.
- W4200480410 modified "2023-10-16" @default.
- W4200480410 title "Experimentally Based CLEAN-SC Array Pairing Method for Distributed Aeroacoustic Sources" @default.
- W4200480410 cites W1979226744 @default.
- W4200480410 cites W1983769676 @default.
- W4200480410 cites W1988808219 @default.
- W4200480410 cites W2009075871 @default.
- W4200480410 cites W2017443071 @default.
- W4200480410 cites W2018725263 @default.
- W4200480410 cites W2023407419 @default.
- W4200480410 cites W2032854600 @default.
- W4200480410 cites W2072118803 @default.
- W4200480410 cites W2076570391 @default.
- W4200480410 cites W2099036631 @default.
- W4200480410 cites W2099357028 @default.
- W4200480410 cites W2106822551 @default.
- W4200480410 cites W2121672570 @default.
- W4200480410 cites W2600072234 @default.
- W4200480410 cites W2610327201 @default.
- W4200480410 cites W2620854971 @default.
- W4200480410 cites W2885034036 @default.
- W4200480410 cites W2899366542 @default.
- W4200480410 cites W2901049758 @default.
- W4200480410 cites W2913432620 @default.
- W4200480410 cites W2967630310 @default.
- W4200480410 cites W2998754463 @default.
- W4200480410 cites W3015885864 @default.
- W4200480410 cites W782790573 @default.
- W4200480410 doi "https://doi.org/10.2514/1.j061270" @default.
- W4200480410 hasPublicationYear "2021" @default.
- W4200480410 type Work @default.
- W4200480410 citedByCount "0" @default.
- W4200480410 crossrefType "journal-article" @default.
- W4200480410 hasAuthorship W4200480410A5008285031 @default.
- W4200480410 hasAuthorship W4200480410A5019338559 @default.
- W4200480410 hasAuthorship W4200480410A5031706084 @default.
- W4200480410 hasAuthorship W4200480410A5033424831 @default.
- W4200480410 hasAuthorship W4200480410A5050231361 @default.
- W4200480410 hasAuthorship W4200480410A5053780153 @default.
- W4200480410 hasAuthorship W4200480410A5072645834 @default.
- W4200480410 hasConcept C121332964 @default.
- W4200480410 hasConcept C127413603 @default.
- W4200480410 hasConcept C14103023 @default.
- W4200480410 hasConcept C146978453 @default.
- W4200480410 hasConcept C192562407 @default.
- W4200480410 hasConcept C24890656 @default.
- W4200480410 hasConcept C26873012 @default.
- W4200480410 hasConcept C39432304 @default.
- W4200480410 hasConcept C54101563 @default.
- W4200480410 hasConcept C57879066 @default.
- W4200480410 hasConceptScore W4200480410C121332964 @default.
- W4200480410 hasConceptScore W4200480410C127413603 @default.
- W4200480410 hasConceptScore W4200480410C14103023 @default.
- W4200480410 hasConceptScore W4200480410C146978453 @default.
- W4200480410 hasConceptScore W4200480410C192562407 @default.
- W4200480410 hasConceptScore W4200480410C24890656 @default.
- W4200480410 hasConceptScore W4200480410C26873012 @default.
- W4200480410 hasConceptScore W4200480410C39432304 @default.
- W4200480410 hasConceptScore W4200480410C54101563 @default.
- W4200480410 hasConceptScore W4200480410C57879066 @default.
- W4200480410 hasFunder F4320321001 @default.
- W4200480410 hasLocation W42004804101 @default.
- W4200480410 hasOpenAccess W4200480410 @default.
- W4200480410 hasPrimaryLocation W42004804101 @default.
- W4200480410 hasRelatedWork W1621480995 @default.
- W4200480410 hasRelatedWork W1980138488 @default.
- W4200480410 hasRelatedWork W2012404692 @default.
- W4200480410 hasRelatedWork W2038716165 @default.
- W4200480410 hasRelatedWork W2046356940 @default.
- W4200480410 hasRelatedWork W2899084033 @default.
- W4200480410 hasRelatedWork W2953361996 @default.
- W4200480410 hasRelatedWork W3101370386 @default.
- W4200480410 hasRelatedWork W3102033226 @default.
- W4200480410 hasRelatedWork W4243897261 @default.
- W4200480410 isParatext "false" @default.
- W4200480410 isRetracted "false" @default.
- W4200480410 workType "article" @default.