Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200498766> ?p ?o ?g. }
- W4200498766 endingPage "887" @default.
- W4200498766 startingPage "878" @default.
- W4200498766 abstract "Deep-learning methods have been developed in recent years and have achieved dramatic improvements for image denoising. The existing deep-learning methods can be conducted using two major models: Encoder–decoder and high-resolution, where the high-resolution model has superior resolution ability for detail description and restoration. In this study, a high-resolution-based network called multiscale residual fusion network (MRF-Net) is proposed, which employed the spatial and contextual information of images. In detail, dilated convolution layers are used to enlarge the network's receptive field and learned sufficient features in a multiscale feature extracting module. The function of dilated convolution is reinterpreted here and it is viewed as a complex downsampling operation. Therefore, multiscale feature analysis could be performed in the proposed network by dilated convolution. Multilevel feature maps are sequentially obtained through a residual projection module, where considerable contextual and spatial information was collected from the multiscale features. In a residual fusion module, all maps were aggregated to generate a residual image effectively for noise removal. Experiments demonstrated that the MRF-Net outperformed several state-of-the-art model-based and deep-learning methods in both blind and non-blind image denoising tests. Meanwhile, ablation studies were executed to verify the denoising performance of each module. Moreover, this method exhibited high computational efficiency, thus demonstrating its practicability." @default.
- W4200498766 created "2021-12-31" @default.
- W4200498766 creator A5001698371 @default.
- W4200498766 creator A5020043723 @default.
- W4200498766 creator A5046666729 @default.
- W4200498766 creator A5057502807 @default.
- W4200498766 creator A5068397071 @default.
- W4200498766 date "2021-12-06" @default.
- W4200498766 modified "2023-09-26" @default.
- W4200498766 title "Multiscale residual fusion network for image denoising" @default.
- W4200498766 cites W2056370875 @default.
- W4200498766 cites W2136396015 @default.
- W4200498766 cites W2153663612 @default.
- W4200498766 cites W2508457857 @default.
- W4200498766 cites W2515222661 @default.
- W4200498766 cites W2556068545 @default.
- W4200498766 cites W2559264300 @default.
- W4200498766 cites W2601564443 @default.
- W4200498766 cites W2741137940 @default.
- W4200498766 cites W2784344583 @default.
- W4200498766 cites W2901172055 @default.
- W4200498766 cites W2903274535 @default.
- W4200498766 cites W2914992179 @default.
- W4200498766 cites W2915142517 @default.
- W4200498766 cites W2963494934 @default.
- W4200498766 cites W2964046397 @default.
- W4200498766 cites W2965669158 @default.
- W4200498766 cites W2966412451 @default.
- W4200498766 cites W2971719842 @default.
- W4200498766 cites W2983315964 @default.
- W4200498766 cites W2999653953 @default.
- W4200498766 cites W3000775737 @default.
- W4200498766 cites W3003296300 @default.
- W4200498766 cites W3020918108 @default.
- W4200498766 cites W3035710032 @default.
- W4200498766 cites W3040531679 @default.
- W4200498766 cites W3044607848 @default.
- W4200498766 cites W3047011367 @default.
- W4200498766 cites W3094897602 @default.
- W4200498766 cites W3104725225 @default.
- W4200498766 cites W3106758205 @default.
- W4200498766 cites W3128435611 @default.
- W4200498766 cites W3134523352 @default.
- W4200498766 cites W3167738729 @default.
- W4200498766 cites W3169761664 @default.
- W4200498766 cites W3170697543 @default.
- W4200498766 cites W3178192988 @default.
- W4200498766 cites W3182000414 @default.
- W4200498766 cites W3195061344 @default.
- W4200498766 cites W4243488610 @default.
- W4200498766 doi "https://doi.org/10.1049/ipr2.12394" @default.
- W4200498766 hasPublicationYear "2021" @default.
- W4200498766 type Work @default.
- W4200498766 citedByCount "3" @default.
- W4200498766 countsByYear W42004987662022 @default.
- W4200498766 countsByYear W42004987662023 @default.
- W4200498766 crossrefType "journal-article" @default.
- W4200498766 hasAuthorship W4200498766A5001698371 @default.
- W4200498766 hasAuthorship W4200498766A5020043723 @default.
- W4200498766 hasAuthorship W4200498766A5046666729 @default.
- W4200498766 hasAuthorship W4200498766A5057502807 @default.
- W4200498766 hasAuthorship W4200498766A5068397071 @default.
- W4200498766 hasBestOaLocation W42004987661 @default.
- W4200498766 hasConcept C108583219 @default.
- W4200498766 hasConcept C110384440 @default.
- W4200498766 hasConcept C11413529 @default.
- W4200498766 hasConcept C115961682 @default.
- W4200498766 hasConcept C138885662 @default.
- W4200498766 hasConcept C153180895 @default.
- W4200498766 hasConcept C154945302 @default.
- W4200498766 hasConcept C155512373 @default.
- W4200498766 hasConcept C163294075 @default.
- W4200498766 hasConcept C2776401178 @default.
- W4200498766 hasConcept C31972630 @default.
- W4200498766 hasConcept C41008148 @default.
- W4200498766 hasConcept C41895202 @default.
- W4200498766 hasConcept C45347329 @default.
- W4200498766 hasConcept C50644808 @default.
- W4200498766 hasConcept C99498987 @default.
- W4200498766 hasConceptScore W4200498766C108583219 @default.
- W4200498766 hasConceptScore W4200498766C110384440 @default.
- W4200498766 hasConceptScore W4200498766C11413529 @default.
- W4200498766 hasConceptScore W4200498766C115961682 @default.
- W4200498766 hasConceptScore W4200498766C138885662 @default.
- W4200498766 hasConceptScore W4200498766C153180895 @default.
- W4200498766 hasConceptScore W4200498766C154945302 @default.
- W4200498766 hasConceptScore W4200498766C155512373 @default.
- W4200498766 hasConceptScore W4200498766C163294075 @default.
- W4200498766 hasConceptScore W4200498766C2776401178 @default.
- W4200498766 hasConceptScore W4200498766C31972630 @default.
- W4200498766 hasConceptScore W4200498766C41008148 @default.
- W4200498766 hasConceptScore W4200498766C41895202 @default.
- W4200498766 hasConceptScore W4200498766C45347329 @default.
- W4200498766 hasConceptScore W4200498766C50644808 @default.
- W4200498766 hasConceptScore W4200498766C99498987 @default.
- W4200498766 hasIssue "3" @default.
- W4200498766 hasLocation W42004987661 @default.
- W4200498766 hasOpenAccess W4200498766 @default.