Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200502248> ?p ?o ?g. }
- W4200502248 endingPage "10" @default.
- W4200502248 startingPage "1" @default.
- W4200502248 abstract "Data-driven soft sensors are widely used to predict quality indices in propylene polymerization processes to improve the availability of measurements and efficiency. To deal with the nonlinearity and dynamics in propylene polymerization processes, a novel soft sensor based on quality-relevant slow feature analysis and Bayesian regression is proposed in this paper. The proposed method can handle the dynamics of the process better by extracting quality-relevant slow features, which present both the slowly varying characteristic and the correlations with quality indices. Meanwhile, a Bayesian inference model is developed to predict the quality indices, which takes advantages of a probability framework with iterative maximum likelihood techniques for parameter estimation and a sparse constraint for avoiding overfitting. Finally, a case study is conducted with data sampled from a practical industrial propylene polymerization process to demonstrate the effectiveness and superiority of the proposed method." @default.
- W4200502248 created "2021-12-31" @default.
- W4200502248 creator A5005330674 @default.
- W4200502248 creator A5029745350 @default.
- W4200502248 creator A5039311772 @default.
- W4200502248 creator A5073760240 @default.
- W4200502248 date "2021-12-30" @default.
- W4200502248 modified "2023-10-15" @default.
- W4200502248 title "Soft Sensor Development Based on Quality-Relevant Slow Feature Analysis and Bayesian Regression with Application to Propylene Polymerization" @default.
- W4200502248 cites W2019821804 @default.
- W4200502248 cites W2055306175 @default.
- W4200502248 cites W2062368510 @default.
- W4200502248 cites W2076464471 @default.
- W4200502248 cites W2101849344 @default.
- W4200502248 cites W2111637385 @default.
- W4200502248 cites W2136295067 @default.
- W4200502248 cites W2146444479 @default.
- W4200502248 cites W2234690043 @default.
- W4200502248 cites W2272446670 @default.
- W4200502248 cites W2341716891 @default.
- W4200502248 cites W2601648083 @default.
- W4200502248 cites W2605489789 @default.
- W4200502248 cites W2727217266 @default.
- W4200502248 cites W2765774435 @default.
- W4200502248 cites W2772343646 @default.
- W4200502248 cites W2777174005 @default.
- W4200502248 cites W2792056293 @default.
- W4200502248 cites W2792451631 @default.
- W4200502248 cites W2792972374 @default.
- W4200502248 cites W2807957050 @default.
- W4200502248 cites W2810347597 @default.
- W4200502248 cites W2883667036 @default.
- W4200502248 cites W2884121498 @default.
- W4200502248 cites W2903530788 @default.
- W4200502248 cites W2913451375 @default.
- W4200502248 cites W2941525957 @default.
- W4200502248 cites W2965420085 @default.
- W4200502248 cites W2966884989 @default.
- W4200502248 cites W2969547129 @default.
- W4200502248 cites W2971407654 @default.
- W4200502248 cites W2973726220 @default.
- W4200502248 cites W2977928247 @default.
- W4200502248 cites W2998450902 @default.
- W4200502248 cites W3042717628 @default.
- W4200502248 cites W3049640903 @default.
- W4200502248 cites W3160417254 @default.
- W4200502248 doi "https://doi.org/10.1155/2021/9985747" @default.
- W4200502248 hasPublicationYear "2021" @default.
- W4200502248 type Work @default.
- W4200502248 citedByCount "4" @default.
- W4200502248 countsByYear W42005022482021 @default.
- W4200502248 countsByYear W42005022482022 @default.
- W4200502248 countsByYear W42005022482023 @default.
- W4200502248 crossrefType "journal-article" @default.
- W4200502248 hasAuthorship W4200502248A5005330674 @default.
- W4200502248 hasAuthorship W4200502248A5029745350 @default.
- W4200502248 hasAuthorship W4200502248A5039311772 @default.
- W4200502248 hasAuthorship W4200502248A5073760240 @default.
- W4200502248 hasBestOaLocation W42005022481 @default.
- W4200502248 hasConcept C105795698 @default.
- W4200502248 hasConcept C107673813 @default.
- W4200502248 hasConcept C111472728 @default.
- W4200502248 hasConcept C111919701 @default.
- W4200502248 hasConcept C115575686 @default.
- W4200502248 hasConcept C124101348 @default.
- W4200502248 hasConcept C138885662 @default.
- W4200502248 hasConcept C154945302 @default.
- W4200502248 hasConcept C159985019 @default.
- W4200502248 hasConcept C160234255 @default.
- W4200502248 hasConcept C192562407 @default.
- W4200502248 hasConcept C22019652 @default.
- W4200502248 hasConcept C2524010 @default.
- W4200502248 hasConcept C2776036281 @default.
- W4200502248 hasConcept C2776401178 @default.
- W4200502248 hasConcept C2779530757 @default.
- W4200502248 hasConcept C33923547 @default.
- W4200502248 hasConcept C41008148 @default.
- W4200502248 hasConcept C41895202 @default.
- W4200502248 hasConcept C44228677 @default.
- W4200502248 hasConcept C50644808 @default.
- W4200502248 hasConcept C521977710 @default.
- W4200502248 hasConcept C83546350 @default.
- W4200502248 hasConcept C98045186 @default.
- W4200502248 hasConceptScore W4200502248C105795698 @default.
- W4200502248 hasConceptScore W4200502248C107673813 @default.
- W4200502248 hasConceptScore W4200502248C111472728 @default.
- W4200502248 hasConceptScore W4200502248C111919701 @default.
- W4200502248 hasConceptScore W4200502248C115575686 @default.
- W4200502248 hasConceptScore W4200502248C124101348 @default.
- W4200502248 hasConceptScore W4200502248C138885662 @default.
- W4200502248 hasConceptScore W4200502248C154945302 @default.
- W4200502248 hasConceptScore W4200502248C159985019 @default.
- W4200502248 hasConceptScore W4200502248C160234255 @default.
- W4200502248 hasConceptScore W4200502248C192562407 @default.
- W4200502248 hasConceptScore W4200502248C22019652 @default.
- W4200502248 hasConceptScore W4200502248C2524010 @default.
- W4200502248 hasConceptScore W4200502248C2776036281 @default.
- W4200502248 hasConceptScore W4200502248C2776401178 @default.