Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200504553> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4200504553 endingPage "119" @default.
- W4200504553 startingPage "107" @default.
- W4200504553 abstract "In Alzheimer’s disease (AD), the tissues and cells in the effected brain start to die gradually and as a result the brain starts to shrink in size and the patient starts to suffer from memory loss. It is a progressive neurological disorder, and a typical AD patient gradually starts to lose memory, the ability to speak, some limb movements and the ability to think clearly. Due to the complex and progressive nature of the disease, it is important to study its progression and to understand the Mild Cognitive Impairment (MCI) at every stage. This research is an attempt to use Deep Learning (DL) Algorithms to study the gradual progression of AD and develop a strategy for the classification of its stages. This research is an attempt to use advanced ML and DL techniques to advance the classification and prediction accuracy of the progression of AD, hence, to improve patient care. In previous studies, structural magnetic resonance imaging (MRI) was used to study the progression of the disease. In this study, dataset from Alzheimer’s Disease Neuroimaging Initiative (ADNI) is used to study the AD progression using ML and DL algorithms. In this dataset, MRI and PET images of the brains, the patients’ genetic information, test of cognitive ability, CSF and blood biomarkers are used as predictors of AD. This dataset has four different classes. In this study, the progression of AD is evaluated using three Convolutional Neural Network (CNN) Architectures with transfer learning. The proposed CNN architecture in this study is VGG16, ResNet50 and Dense201. The DenseNet201 model outperforms and has the accuracy of 0.95%." @default.
- W4200504553 created "2021-12-31" @default.
- W4200504553 creator A5076611315 @default.
- W4200504553 date "2021-12-10" @default.
- W4200504553 modified "2023-09-24" @default.
- W4200504553 title "Stage Classification of Alzheimer’s Disease Using Transfer Learning" @default.
- W4200504553 cites W2060701556 @default.
- W4200504553 cites W2101282194 @default.
- W4200504553 cites W2130686832 @default.
- W4200504553 cites W2150813313 @default.
- W4200504553 cites W2265799967 @default.
- W4200504553 cites W2477263588 @default.
- W4200504553 cites W2580596898 @default.
- W4200504553 cites W2606546398 @default.
- W4200504553 cites W2737584517 @default.
- W4200504553 cites W2748217759 @default.
- W4200504553 cites W2765366332 @default.
- W4200504553 cites W2805773775 @default.
- W4200504553 cites W2891599848 @default.
- W4200504553 cites W2912541111 @default.
- W4200504553 cites W2965102627 @default.
- W4200504553 cites W2985019745 @default.
- W4200504553 cites W2993219936 @default.
- W4200504553 cites W3105164764 @default.
- W4200504553 cites W4211050998 @default.
- W4200504553 doi "https://doi.org/10.1007/978-981-16-5559-3_10" @default.
- W4200504553 hasPublicationYear "2021" @default.
- W4200504553 type Work @default.
- W4200504553 citedByCount "1" @default.
- W4200504553 countsByYear W42005045532023 @default.
- W4200504553 crossrefType "book-chapter" @default.
- W4200504553 hasAuthorship W4200504553A5076611315 @default.
- W4200504553 hasConcept C108583219 @default.
- W4200504553 hasConcept C126838900 @default.
- W4200504553 hasConcept C142724271 @default.
- W4200504553 hasConcept C143409427 @default.
- W4200504553 hasConcept C146357865 @default.
- W4200504553 hasConcept C150899416 @default.
- W4200504553 hasConcept C151730666 @default.
- W4200504553 hasConcept C154945302 @default.
- W4200504553 hasConcept C15744967 @default.
- W4200504553 hasConcept C169760540 @default.
- W4200504553 hasConcept C169900460 @default.
- W4200504553 hasConcept C2779134260 @default.
- W4200504553 hasConcept C41008148 @default.
- W4200504553 hasConcept C58693492 @default.
- W4200504553 hasConcept C71924100 @default.
- W4200504553 hasConcept C81363708 @default.
- W4200504553 hasConcept C86803240 @default.
- W4200504553 hasConceptScore W4200504553C108583219 @default.
- W4200504553 hasConceptScore W4200504553C126838900 @default.
- W4200504553 hasConceptScore W4200504553C142724271 @default.
- W4200504553 hasConceptScore W4200504553C143409427 @default.
- W4200504553 hasConceptScore W4200504553C146357865 @default.
- W4200504553 hasConceptScore W4200504553C150899416 @default.
- W4200504553 hasConceptScore W4200504553C151730666 @default.
- W4200504553 hasConceptScore W4200504553C154945302 @default.
- W4200504553 hasConceptScore W4200504553C15744967 @default.
- W4200504553 hasConceptScore W4200504553C169760540 @default.
- W4200504553 hasConceptScore W4200504553C169900460 @default.
- W4200504553 hasConceptScore W4200504553C2779134260 @default.
- W4200504553 hasConceptScore W4200504553C41008148 @default.
- W4200504553 hasConceptScore W4200504553C58693492 @default.
- W4200504553 hasConceptScore W4200504553C71924100 @default.
- W4200504553 hasConceptScore W4200504553C81363708 @default.
- W4200504553 hasConceptScore W4200504553C86803240 @default.
- W4200504553 hasLocation W42005045531 @default.
- W4200504553 hasOpenAccess W4200504553 @default.
- W4200504553 hasPrimaryLocation W42005045531 @default.
- W4200504553 hasRelatedWork W2997709384 @default.
- W4200504553 hasRelatedWork W3012393889 @default.
- W4200504553 hasRelatedWork W3018421652 @default.
- W4200504553 hasRelatedWork W3091976719 @default.
- W4200504553 hasRelatedWork W3189091156 @default.
- W4200504553 hasRelatedWork W3192840557 @default.
- W4200504553 hasRelatedWork W4220996320 @default.
- W4200504553 hasRelatedWork W4313289428 @default.
- W4200504553 hasRelatedWork W4362564549 @default.
- W4200504553 hasRelatedWork W4382193078 @default.
- W4200504553 isParatext "false" @default.
- W4200504553 isRetracted "false" @default.
- W4200504553 workType "book-chapter" @default.