Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200504994> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4200504994 endingPage "e0260758" @default.
- W4200504994 startingPage "e0260758" @default.
- W4200504994 abstract "This study aims to solve the overfitting problem caused by insufficient labeled images in the automatic image annotation field. We propose a transfer learning model called CNN-2L that incorporates the label localization strategy described in this study. The model consists of an InceptionV3 network pretrained on the ImageNet dataset and a label localization algorithm. First, the pretrained InceptionV3 network extracts features from the target dataset that are used to train a specific classifier and fine-tune the entire network to obtain an optimal model. Then, the obtained model is used to derive the probabilities of the predicted labels. For this purpose, we introduce a squeeze and excitation (SE) module into the network architecture that augments the useful feature information, inhibits useless feature information, and conducts feature reweighting. Next, we perform label localization to obtain the label probabilities and determine the final label set for each image. During this process, the number of labels must be determined. The optimal K value is obtained experimentally and used to determine the number of predicted labels, thereby solving the empty label set problem that occurs when the predicted label values of images are below a fixed threshold. Experiments on the Corel5k multilabel image dataset verify that CNN-2L improves the labeling precision by 18% and 15% compared with the traditional multiple-Bernoulli relevance model (MBRM) and joint equal contribution (JEC) algorithms, respectively, and it improves the recall by 6% compared with JEC. Additionally, it improves the precision by 20% and 11% compared with the deep learning methods Weight-KNN and adaptive hypergraph learning (AHL), respectively. Although CNN-2L fails to improve the recall compared with the semantic extension model (SEM), it improves the comprehensive index of the F1 value by 1%. The experimental results reveal that the proposed transfer learning model based on a label localization strategy is effective for automatic image annotation and substantially boosts the multilabel image annotation performance." @default.
- W4200504994 created "2021-12-31" @default.
- W4200504994 creator A5013194464 @default.
- W4200504994 creator A5021115064 @default.
- W4200504994 creator A5032414381 @default.
- W4200504994 creator A5068951778 @default.
- W4200504994 creator A5072211574 @default.
- W4200504994 date "2021-12-08" @default.
- W4200504994 modified "2023-10-18" @default.
- W4200504994 title "A localization strategy combined with transfer learning for image annotation" @default.
- W4200504994 cites W1666447063 @default.
- W4200504994 cites W1677182931 @default.
- W4200504994 cites W1983988843 @default.
- W4200504994 cites W2001903799 @default.
- W4200504994 cites W2002624135 @default.
- W4200504994 cites W2052684427 @default.
- W4200504994 cites W2097117768 @default.
- W4200504994 cites W2118187752 @default.
- W4200504994 cites W2122317659 @default.
- W4200504994 cites W2165698076 @default.
- W4200504994 cites W2183341477 @default.
- W4200504994 cites W2575255488 @default.
- W4200504994 cites W2802644759 @default.
- W4200504994 cites W2808862089 @default.
- W4200504994 cites W2948905445 @default.
- W4200504994 cites W2963420686 @default.
- W4200504994 cites W3092599355 @default.
- W4200504994 doi "https://doi.org/10.1371/journal.pone.0260758" @default.
- W4200504994 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34879097" @default.
- W4200504994 hasPublicationYear "2021" @default.
- W4200504994 type Work @default.
- W4200504994 citedByCount "0" @default.
- W4200504994 crossrefType "journal-article" @default.
- W4200504994 hasAuthorship W4200504994A5013194464 @default.
- W4200504994 hasAuthorship W4200504994A5021115064 @default.
- W4200504994 hasAuthorship W4200504994A5032414381 @default.
- W4200504994 hasAuthorship W4200504994A5068951778 @default.
- W4200504994 hasAuthorship W4200504994A5072211574 @default.
- W4200504994 hasBestOaLocation W42005049941 @default.
- W4200504994 hasConcept C115961682 @default.
- W4200504994 hasConcept C119857082 @default.
- W4200504994 hasConcept C138885662 @default.
- W4200504994 hasConcept C150899416 @default.
- W4200504994 hasConcept C153180895 @default.
- W4200504994 hasConcept C154945302 @default.
- W4200504994 hasConcept C177264268 @default.
- W4200504994 hasConcept C199360897 @default.
- W4200504994 hasConcept C22019652 @default.
- W4200504994 hasConcept C2776321320 @default.
- W4200504994 hasConcept C2776401178 @default.
- W4200504994 hasConcept C41008148 @default.
- W4200504994 hasConcept C41895202 @default.
- W4200504994 hasConcept C50644808 @default.
- W4200504994 hasConcept C81669768 @default.
- W4200504994 hasConcept C95623464 @default.
- W4200504994 hasConceptScore W4200504994C115961682 @default.
- W4200504994 hasConceptScore W4200504994C119857082 @default.
- W4200504994 hasConceptScore W4200504994C138885662 @default.
- W4200504994 hasConceptScore W4200504994C150899416 @default.
- W4200504994 hasConceptScore W4200504994C153180895 @default.
- W4200504994 hasConceptScore W4200504994C154945302 @default.
- W4200504994 hasConceptScore W4200504994C177264268 @default.
- W4200504994 hasConceptScore W4200504994C199360897 @default.
- W4200504994 hasConceptScore W4200504994C22019652 @default.
- W4200504994 hasConceptScore W4200504994C2776321320 @default.
- W4200504994 hasConceptScore W4200504994C2776401178 @default.
- W4200504994 hasConceptScore W4200504994C41008148 @default.
- W4200504994 hasConceptScore W4200504994C41895202 @default.
- W4200504994 hasConceptScore W4200504994C50644808 @default.
- W4200504994 hasConceptScore W4200504994C81669768 @default.
- W4200504994 hasConceptScore W4200504994C95623464 @default.
- W4200504994 hasIssue "12" @default.
- W4200504994 hasLocation W42005049941 @default.
- W4200504994 hasLocation W42005049942 @default.
- W4200504994 hasLocation W42005049943 @default.
- W4200504994 hasLocation W42005049944 @default.
- W4200504994 hasLocation W42005049945 @default.
- W4200504994 hasOpenAccess W4200504994 @default.
- W4200504994 hasPrimaryLocation W42005049941 @default.
- W4200504994 hasRelatedWork W1996541855 @default.
- W4200504994 hasRelatedWork W2563096758 @default.
- W4200504994 hasRelatedWork W2742991909 @default.
- W4200504994 hasRelatedWork W2767651786 @default.
- W4200504994 hasRelatedWork W2940336242 @default.
- W4200504994 hasRelatedWork W2989932438 @default.
- W4200504994 hasRelatedWork W3012393889 @default.
- W4200504994 hasRelatedWork W3099765033 @default.
- W4200504994 hasRelatedWork W4210794429 @default.
- W4200504994 hasRelatedWork W4308262314 @default.
- W4200504994 hasVolume "16" @default.
- W4200504994 isParatext "false" @default.
- W4200504994 isRetracted "false" @default.
- W4200504994 workType "article" @default.