Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200505732> ?p ?o ?g. }
- W4200505732 endingPage "S713" @default.
- W4200505732 startingPage "S712" @default.
- W4200505732 abstract "Abstract Background The cefazolin (Cz) inoculum effect (CzIE), defined as an increase in the Cz MIC to ≥16 µg/mL at high inoculum (107 CFU/mL), has been associated with poor outcomes in MSSA bacteremia and osteomyelitis. The CzIE is associated with the BlaZ β-lactamase, encoded by blaZ and regulated by BlaR (antibiotic sensor) and BlaI (transcriptional repressor). Here, we aimed to obtain a machine-learning (ML) model to predict the presence of the CzIE based on the nucleotide sequence of the entire bla operon and its regulatory components. Methods Using whole genome sequencing, we analyzed the nucleotide sequences of the entire bla operon in 436 MSSA isolates recovered from blood, soft-tissue infections or pneumonia in adults (training-testing cohort, prevalence of the CzIE: 46%). Also, 32 MSSA recovered from pediatric patients with osteomyelitis with the CzIE were included as validation cohort. The CzIE was determined by broth microdilution at high inoculum. K-mer counts were obtained from the bla operon sequences of the isolates from the testing-training cohort, and then used in a ML pipeline which i) discards uninformative K-mers, ii) identifies optimal hyper-parameters and, iii) performs training of the model using 70% of the sequences as training set and 30% as testing set. The pipeline tested 11 different K-mer sizes and 2 models: Logistic Regression (LR) and Support Vector Machine (SVM). Finally, the model with best predictive ability was applied to the sequences of the MSSA osteomyelitis isolates (validation cohort). Results The ML approach had high specificity ( >90%), accuracy ( >80%) and ROC-AUC values ( >0.7) for detecting the CzIE in the testing set of isolates (Figure 1), independently of the type of model or the K-mer size used. The best predictive ability was with LR using K-mers of 17 nucleotides, with an accuracy of 84%, specificity of 96%, and sensitivity of 70% in the testing set (Figure 2). In the validation cohort, the model was capable to correctly identify all the strains exhibiting the CzIE (100% sensitivity). Figure 1. Prediction metrics of the ML pipeline for the detection of the CzIE in MSSA isolates from the training-test cohort. Predictions are shown accordingly to the model and K-mer sizes tested. Figure 2. ROC of best predictive model (Logistic Regression, K-mer size 17) for the detection of the CzIE in MSSA isolates. Conclusion The ML approach is a promising genomic application to detect the CzIE in MSSA isolates of a variety of sources, bypassing phenotypic testing. Further validation is needed to evaluate its possible utility in clinical settings. Disclosures Jonathon C. McNeil, MD, Agency for Healthcare Research and Quality (Research Grant or Support)Allergan (Grant/Research Support)Nabriva (Grant/Research Support, Other Financial or Material Support, Site PI for a multicenter trial) Anthony R. Flores, MD, MPH, PhD, Nothing to disclose Sheldon L. Kaplan, MD, Pfizer (Research Grant or Support) Cesar A. Arias, M.D., MSc, Ph.D., FIDSA, Entasis Therapeutics (Grant/Research Support)MeMed Diagnostics (Grant/Research Support)Merk (Grant/Research Support) Lorena Diaz, PhD , Nothing to disclose" @default.
- W4200505732 created "2021-12-31" @default.
- W4200505732 creator A5003909462 @default.
- W4200505732 creator A5010400386 @default.
- W4200505732 creator A5012936100 @default.
- W4200505732 creator A5027587575 @default.
- W4200505732 creator A5030772552 @default.
- W4200505732 creator A5048605587 @default.
- W4200505732 creator A5048873527 @default.
- W4200505732 creator A5054604363 @default.
- W4200505732 creator A5056575626 @default.
- W4200505732 creator A5063626929 @default.
- W4200505732 creator A5066812140 @default.
- W4200505732 creator A5068240397 @default.
- W4200505732 creator A5080756428 @default.
- W4200505732 creator A5082551216 @default.
- W4200505732 creator A5089139574 @default.
- W4200505732 date "2021-11-01" @default.
- W4200505732 modified "2023-09-30" @default.
- W4200505732 title "1248. A Machine-Learning Approach to Predict the Cefazolin Inoculum Effect in Methicillin-Susceptible Staphylococcus aureus" @default.
- W4200505732 doi "https://doi.org/10.1093/ofid/ofab466.1440" @default.
- W4200505732 hasPublicationYear "2021" @default.
- W4200505732 type Work @default.
- W4200505732 citedByCount "0" @default.
- W4200505732 crossrefType "journal-article" @default.
- W4200505732 hasAuthorship W4200505732A5003909462 @default.
- W4200505732 hasAuthorship W4200505732A5010400386 @default.
- W4200505732 hasAuthorship W4200505732A5012936100 @default.
- W4200505732 hasAuthorship W4200505732A5027587575 @default.
- W4200505732 hasAuthorship W4200505732A5030772552 @default.
- W4200505732 hasAuthorship W4200505732A5048605587 @default.
- W4200505732 hasAuthorship W4200505732A5048873527 @default.
- W4200505732 hasAuthorship W4200505732A5054604363 @default.
- W4200505732 hasAuthorship W4200505732A5056575626 @default.
- W4200505732 hasAuthorship W4200505732A5063626929 @default.
- W4200505732 hasAuthorship W4200505732A5066812140 @default.
- W4200505732 hasAuthorship W4200505732A5068240397 @default.
- W4200505732 hasAuthorship W4200505732A5080756428 @default.
- W4200505732 hasAuthorship W4200505732A5082551216 @default.
- W4200505732 hasAuthorship W4200505732A5089139574 @default.
- W4200505732 hasBestOaLocation W42005057321 @default.
- W4200505732 hasConcept C104317684 @default.
- W4200505732 hasConcept C126322002 @default.
- W4200505732 hasConcept C141071460 @default.
- W4200505732 hasConcept C151956035 @default.
- W4200505732 hasConcept C176947019 @default.
- W4200505732 hasConcept C203075996 @default.
- W4200505732 hasConcept C2778353156 @default.
- W4200505732 hasConcept C2779443120 @default.
- W4200505732 hasConcept C2779489039 @default.
- W4200505732 hasConcept C2780551157 @default.
- W4200505732 hasConcept C2780950330 @default.
- W4200505732 hasConcept C501593827 @default.
- W4200505732 hasConcept C523546767 @default.
- W4200505732 hasConcept C54355233 @default.
- W4200505732 hasConcept C547475151 @default.
- W4200505732 hasConcept C64778159 @default.
- W4200505732 hasConcept C71924100 @default.
- W4200505732 hasConcept C72563966 @default.
- W4200505732 hasConcept C86803240 @default.
- W4200505732 hasConcept C89423630 @default.
- W4200505732 hasConceptScore W4200505732C104317684 @default.
- W4200505732 hasConceptScore W4200505732C126322002 @default.
- W4200505732 hasConceptScore W4200505732C141071460 @default.
- W4200505732 hasConceptScore W4200505732C151956035 @default.
- W4200505732 hasConceptScore W4200505732C176947019 @default.
- W4200505732 hasConceptScore W4200505732C203075996 @default.
- W4200505732 hasConceptScore W4200505732C2778353156 @default.
- W4200505732 hasConceptScore W4200505732C2779443120 @default.
- W4200505732 hasConceptScore W4200505732C2779489039 @default.
- W4200505732 hasConceptScore W4200505732C2780551157 @default.
- W4200505732 hasConceptScore W4200505732C2780950330 @default.
- W4200505732 hasConceptScore W4200505732C501593827 @default.
- W4200505732 hasConceptScore W4200505732C523546767 @default.
- W4200505732 hasConceptScore W4200505732C54355233 @default.
- W4200505732 hasConceptScore W4200505732C547475151 @default.
- W4200505732 hasConceptScore W4200505732C64778159 @default.
- W4200505732 hasConceptScore W4200505732C71924100 @default.
- W4200505732 hasConceptScore W4200505732C72563966 @default.
- W4200505732 hasConceptScore W4200505732C86803240 @default.
- W4200505732 hasConceptScore W4200505732C89423630 @default.
- W4200505732 hasIssue "Supplement_1" @default.
- W4200505732 hasLocation W42005057321 @default.
- W4200505732 hasOpenAccess W4200505732 @default.
- W4200505732 hasPrimaryLocation W42005057321 @default.
- W4200505732 hasRelatedWork W1975686495 @default.
- W4200505732 hasRelatedWork W1977406574 @default.
- W4200505732 hasRelatedWork W1981828377 @default.
- W4200505732 hasRelatedWork W2006307705 @default.
- W4200505732 hasRelatedWork W2016468759 @default.
- W4200505732 hasRelatedWork W2170220195 @default.
- W4200505732 hasRelatedWork W3125557516 @default.
- W4200505732 hasRelatedWork W4200505732 @default.
- W4200505732 hasRelatedWork W4280620107 @default.
- W4200505732 hasRelatedWork W4311614890 @default.
- W4200505732 hasVolume "8" @default.
- W4200505732 isParatext "false" @default.
- W4200505732 isRetracted "false" @default.