Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200505891> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4200505891 abstract "Lung related issues are rapidly increasing day by day as it is very important to identify the disease and get treated earliest possible as lungs are part of very complex system, expanding and relaxing thousands of times each day allow us to breathe by bringing oxygen into our bodies and sending carbon dioxide out. Lung related issues are directly preoperational to breathing problems. X-rays are one of the important ways of identifying the status of lungs. As there are many communicable diseases like Covid-19, the person should be identified early and should be treated to control the spread of virus. Lung Opacity is one of the major problem faced by many people and also a very serious problem if not treated early it will spread entire lungs and which leads to cancer similarly Pneumonia is another disease which is an infection to one's lungs caused by spread of virus. All these diseases directly affect Respiratory system of human. The paper aims to lung diseases classification among Pneumonia, Lung opacity, Normal and Covid-19 using the proposed hybrid model. The Deep Transfer Learning model helps to extract good features which helps for better learning and greater results. The Ensembled model of Deep Transfer Learning is used in this paper, which is a combination of VGG, EfficientNet and DenseNet. Considering the output of image augmentation as input for Ensembled model and classification of lung disease. The accuracy of the proposed hybrid model is very much accurate when compared to individual base models." @default.
- W4200505891 created "2021-12-31" @default.
- W4200505891 creator A5001358767 @default.
- W4200505891 creator A5002469050 @default.
- W4200505891 creator A5013800269 @default.
- W4200505891 creator A5032629337 @default.
- W4200505891 creator A5033149240 @default.
- W4200505891 date "2021-09-24" @default.
- W4200505891 modified "2023-09-26" @default.
- W4200505891 title "Forecasting the lung diseases from Radiography scans with hybrid Transfer Learning Techniques" @default.
- W4200505891 cites W2034619416 @default.
- W4200505891 cites W2135324568 @default.
- W4200505891 cites W2533800772 @default.
- W4200505891 cites W2592929672 @default.
- W4200505891 cites W2785509390 @default.
- W4200505891 cites W2803760365 @default.
- W4200505891 cites W2809598685 @default.
- W4200505891 cites W2963172626 @default.
- W4200505891 cites W2963446712 @default.
- W4200505891 cites W2968171911 @default.
- W4200505891 cites W2996589582 @default.
- W4200505891 cites W2998957378 @default.
- W4200505891 cites W3006882119 @default.
- W4200505891 cites W3041133507 @default.
- W4200505891 cites W3045460727 @default.
- W4200505891 cites W3080816325 @default.
- W4200505891 cites W3082484031 @default.
- W4200505891 cites W3084427735 @default.
- W4200505891 cites W3155091372 @default.
- W4200505891 doi "https://doi.org/10.1109/icses52305.2021.9633887" @default.
- W4200505891 hasPublicationYear "2021" @default.
- W4200505891 type Work @default.
- W4200505891 citedByCount "0" @default.
- W4200505891 crossrefType "proceedings-article" @default.
- W4200505891 hasAuthorship W4200505891A5001358767 @default.
- W4200505891 hasAuthorship W4200505891A5002469050 @default.
- W4200505891 hasAuthorship W4200505891A5013800269 @default.
- W4200505891 hasAuthorship W4200505891A5032629337 @default.
- W4200505891 hasAuthorship W4200505891A5033149240 @default.
- W4200505891 hasConcept C108583219 @default.
- W4200505891 hasConcept C126322002 @default.
- W4200505891 hasConcept C126838900 @default.
- W4200505891 hasConcept C142724271 @default.
- W4200505891 hasConcept C150899416 @default.
- W4200505891 hasConcept C154945302 @default.
- W4200505891 hasConcept C2777714996 @default.
- W4200505891 hasConcept C2777914695 @default.
- W4200505891 hasConcept C2779134260 @default.
- W4200505891 hasConcept C3008058167 @default.
- W4200505891 hasConcept C36454342 @default.
- W4200505891 hasConcept C41008148 @default.
- W4200505891 hasConcept C524204448 @default.
- W4200505891 hasConcept C71924100 @default.
- W4200505891 hasConceptScore W4200505891C108583219 @default.
- W4200505891 hasConceptScore W4200505891C126322002 @default.
- W4200505891 hasConceptScore W4200505891C126838900 @default.
- W4200505891 hasConceptScore W4200505891C142724271 @default.
- W4200505891 hasConceptScore W4200505891C150899416 @default.
- W4200505891 hasConceptScore W4200505891C154945302 @default.
- W4200505891 hasConceptScore W4200505891C2777714996 @default.
- W4200505891 hasConceptScore W4200505891C2777914695 @default.
- W4200505891 hasConceptScore W4200505891C2779134260 @default.
- W4200505891 hasConceptScore W4200505891C3008058167 @default.
- W4200505891 hasConceptScore W4200505891C36454342 @default.
- W4200505891 hasConceptScore W4200505891C41008148 @default.
- W4200505891 hasConceptScore W4200505891C524204448 @default.
- W4200505891 hasConceptScore W4200505891C71924100 @default.
- W4200505891 hasLocation W42005058911 @default.
- W4200505891 hasOpenAccess W4200505891 @default.
- W4200505891 hasPrimaryLocation W42005058911 @default.
- W4200505891 hasRelatedWork W2889705046 @default.
- W4200505891 hasRelatedWork W2949280030 @default.
- W4200505891 hasRelatedWork W2953350812 @default.
- W4200505891 hasRelatedWork W2997709384 @default.
- W4200505891 hasRelatedWork W3091976719 @default.
- W4200505891 hasRelatedWork W3166467183 @default.
- W4200505891 hasRelatedWork W3192840557 @default.
- W4200505891 hasRelatedWork W3200268767 @default.
- W4200505891 hasRelatedWork W4213299466 @default.
- W4200505891 hasRelatedWork W4309680570 @default.
- W4200505891 isParatext "false" @default.
- W4200505891 isRetracted "false" @default.
- W4200505891 workType "article" @default.