Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200506681> ?p ?o ?g. }
- W4200506681 endingPage "107811" @default.
- W4200506681 startingPage "107811" @default.
- W4200506681 abstract "The combination of forage-crop rotation with conservation tillage has long been known to result in proven productivity and sustainability, but less information is available on the influence of long-term conservation tillage practices on the movement of soil water and residual nitrate at deep soil depths in forage-crop rotation systems. In this study, we measured the changes in soil water storage, residual soil nitrate accumulation and their relationship to study the long-term effects of tillage and mulching practices on regional nitrogen management in maize (Zea mays L.)-wheat (Triticum aestivum L.)-common vetch (Vicia sativa L., annual legume forage) rotation system. Soils were collected from the 500-cm soil profile at the harvest stage of the maize and common vetch after 19 years of continuous conventional tillage (T), conventional tillage followed by straw mulching (TS), no tillage (NT), and no tillage followed by straw mulching (NTS) on the Loess Plateau, China. The results showed that the NT practices increased soil water storage by 3.07% compared with the T practices in the maize field, mulching practices increased soil water storage by 3.47% compared with no mulching practices in the common vetch field, and the improvement effect was mainly concentrated in the deep soil layer (150–500 cm). When compared with no mulching, straw mulching practices increased residual soil nitrate accumulation by 51.20 kg ha−1 at shallow soil depths (0–120 cm) but decreased this accumulation by 206.09 kg ha−1 at deep soil depths (120–500 cm) in the maize field; however, straw mulching decreased nitrate accumulation by 16.25 kg ha−1 throughout the whole profile (0–500 cm) in the common vetch field. The NT practices decreased residual soil nitrate accumulation by 131.65 kg ha−1 compared with the T practices in the maize field but had no effects on the common vetch field in the 0–500-cm soil profile. Greater changes in soil residual nitrate accumulation appeared at depths of 200–500 cm than at other depths. Moreover, according to structural equation model, nitrite accumulation was limited by soil water storage. Soil nitrate peaked at deeper soil depths in the NT (90–120 cm) and TS (250–300 cm) treatments than in the T treatment (60–90 cm), whereas the NTS treatment resulted in no nitrate accumulation peak across the whole soil profile. Soil water recharge and depletion were deeper in the NT and TS treatments than in the T treatment, and this effect could limit the further leaching of soil nitrate into deep soil. The depth of soil water recharge was deeper than the depth of nitrate accumulation, and the vertical movement speed of soil residual nitrate was slower than that of soil water. Therefore, the downward movement of soil nitrate lagged behind that of soil water. Together, these results demonstrated that the NTS treatment exerted the strongest effect on maintaining soil water and decreasing residual nitrate accumulation at deep soil depths, which will be favorable for improving regional N management and assessing N budgets in agroecological systems on the Loess Plateau." @default.
- W4200506681 created "2021-12-31" @default.
- W4200506681 creator A5021271475 @default.
- W4200506681 creator A5034902403 @default.
- W4200506681 creator A5071237779 @default.
- W4200506681 creator A5077379280 @default.
- W4200506681 creator A5086180950 @default.
- W4200506681 date "2022-03-01" @default.
- W4200506681 modified "2023-10-10" @default.
- W4200506681 title "The lagging movement of soil nitrate in comparison to that of soil water in the 500-cm soil profile" @default.
- W4200506681 cites W1540271675 @default.
- W4200506681 cites W1814792502 @default.
- W4200506681 cites W1973732723 @default.
- W4200506681 cites W1982468089 @default.
- W4200506681 cites W1982543093 @default.
- W4200506681 cites W1985151603 @default.
- W4200506681 cites W1985733440 @default.
- W4200506681 cites W1987408149 @default.
- W4200506681 cites W1989757688 @default.
- W4200506681 cites W1994059495 @default.
- W4200506681 cites W2002143791 @default.
- W4200506681 cites W2009391723 @default.
- W4200506681 cites W2016179669 @default.
- W4200506681 cites W2017704720 @default.
- W4200506681 cites W2017868091 @default.
- W4200506681 cites W2018216644 @default.
- W4200506681 cites W2018848355 @default.
- W4200506681 cites W2043259732 @default.
- W4200506681 cites W2046796246 @default.
- W4200506681 cites W2054058022 @default.
- W4200506681 cites W2062810722 @default.
- W4200506681 cites W2064383571 @default.
- W4200506681 cites W2065742134 @default.
- W4200506681 cites W2067243979 @default.
- W4200506681 cites W2080228412 @default.
- W4200506681 cites W2082404628 @default.
- W4200506681 cites W2087871835 @default.
- W4200506681 cites W2089120153 @default.
- W4200506681 cites W2130151834 @default.
- W4200506681 cites W226670603 @default.
- W4200506681 cites W2280751921 @default.
- W4200506681 cites W2296862448 @default.
- W4200506681 cites W2299123263 @default.
- W4200506681 cites W2311516583 @default.
- W4200506681 cites W2471997905 @default.
- W4200506681 cites W2497268623 @default.
- W4200506681 cites W2506840364 @default.
- W4200506681 cites W2531447348 @default.
- W4200506681 cites W2550521065 @default.
- W4200506681 cites W2733459631 @default.
- W4200506681 cites W2737090333 @default.
- W4200506681 cites W2761830578 @default.
- W4200506681 cites W2792994373 @default.
- W4200506681 cites W2796121984 @default.
- W4200506681 cites W2800720856 @default.
- W4200506681 cites W2805961512 @default.
- W4200506681 cites W2884471954 @default.
- W4200506681 cites W2887623641 @default.
- W4200506681 cites W2891508489 @default.
- W4200506681 cites W2896993305 @default.
- W4200506681 cites W2901408968 @default.
- W4200506681 cites W2911393989 @default.
- W4200506681 cites W2940119909 @default.
- W4200506681 cites W2945646690 @default.
- W4200506681 cites W3016145370 @default.
- W4200506681 cites W3163033473 @default.
- W4200506681 cites W3183419906 @default.
- W4200506681 cites W913587161 @default.
- W4200506681 doi "https://doi.org/10.1016/j.agee.2021.107811" @default.
- W4200506681 hasPublicationYear "2022" @default.
- W4200506681 type Work @default.
- W4200506681 citedByCount "8" @default.
- W4200506681 countsByYear W42005066812022 @default.
- W4200506681 countsByYear W42005066812023 @default.
- W4200506681 crossrefType "journal-article" @default.
- W4200506681 hasAuthorship W4200506681A5021271475 @default.
- W4200506681 hasAuthorship W4200506681A5034902403 @default.
- W4200506681 hasAuthorship W4200506681A5071237779 @default.
- W4200506681 hasAuthorship W4200506681A5077379280 @default.
- W4200506681 hasAuthorship W4200506681A5086180950 @default.
- W4200506681 hasConcept C116370137 @default.
- W4200506681 hasConcept C137580998 @default.
- W4200506681 hasConcept C156634047 @default.
- W4200506681 hasConcept C159390177 @default.
- W4200506681 hasConcept C159750122 @default.
- W4200506681 hasConcept C16397148 @default.
- W4200506681 hasConcept C175092762 @default.
- W4200506681 hasConcept C175760724 @default.
- W4200506681 hasConcept C2779587293 @default.
- W4200506681 hasConcept C2780696901 @default.
- W4200506681 hasConcept C38774213 @default.
- W4200506681 hasConcept C39432304 @default.
- W4200506681 hasConcept C6557445 @default.
- W4200506681 hasConcept C86803240 @default.
- W4200506681 hasConceptScore W4200506681C116370137 @default.
- W4200506681 hasConceptScore W4200506681C137580998 @default.
- W4200506681 hasConceptScore W4200506681C156634047 @default.
- W4200506681 hasConceptScore W4200506681C159390177 @default.