Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200508691> ?p ?o ?g. }
- W4200508691 endingPage "22" @default.
- W4200508691 startingPage "22" @default.
- W4200508691 abstract "The Asian rice gall midge (Orseolia oryzae (Wood-Mason)) is a major insect pest in rice cultivation. Therefore, development of a reliable system for the timely prediction of this insect would be a valuable tool in pest management. In this study, occurring between the period from 2013–2018: (i) gall midge populations were recorded using a light trap with an incandescent bulb, and (ii) climatological parameters (air temperature, air relative humidity, rainfall and insulations) were measured at four intensive rice cropping agroecosystems that are endemic for gall midge incidence in India. In addition, weekly cumulative trapped gall midge populations and weekly averages of climatological data were subjected to count time series (Integer-valued Generalized Autoregressive Conditional Heteroscedastic—INGARCH) and machine learning (Artificial Neural Network—ANN, and Support Vector Regression—SVR) models. The empirical results revealed that the ANN with exogenous variable (ANNX) model outperformed INGRACH with exogenous variable (INGRCHX) and SVR with exogenous variable (SVRX) models in the prediction of gall midge populations in both training and testing data sets. Moreover, the Diebold–Mariano (DM) test confirmed the significant superiority of the ANNX model over INGARCHX and SVRX models in modeling and predicting rice gall midge populations. Utilizing the presented efficient early warning system based on a robust statistical model to predict the build-up of gall midge population could greatly contribute to the design and implementation of both proactive and more sustainable site-specific pest management strategies to avoid significant rice yield losses." @default.
- W4200508691 created "2021-12-31" @default.
- W4200508691 creator A5003976392 @default.
- W4200508691 creator A5004154958 @default.
- W4200508691 creator A5015945151 @default.
- W4200508691 creator A5016006260 @default.
- W4200508691 creator A5016857992 @default.
- W4200508691 creator A5021453856 @default.
- W4200508691 creator A5024960664 @default.
- W4200508691 creator A5032149090 @default.
- W4200508691 creator A5032634360 @default.
- W4200508691 creator A5038380396 @default.
- W4200508691 creator A5043047410 @default.
- W4200508691 creator A5054393764 @default.
- W4200508691 creator A5071868202 @default.
- W4200508691 creator A5076706678 @default.
- W4200508691 creator A5087671219 @default.
- W4200508691 creator A5090860035 @default.
- W4200508691 date "2021-12-23" @default.
- W4200508691 modified "2023-10-18" @default.
- W4200508691 title "Climate-Based Modeling and Prediction of Rice Gall Midge Populations Using Count Time Series and Machine Learning Approaches" @default.
- W4200508691 cites W1644145788 @default.
- W4200508691 cites W1977168786 @default.
- W4200508691 cites W1986495612 @default.
- W4200508691 cites W2008779124 @default.
- W4200508691 cites W2013053842 @default.
- W4200508691 cites W2018087289 @default.
- W4200508691 cites W2019317510 @default.
- W4200508691 cites W2044121999 @default.
- W4200508691 cites W2091770276 @default.
- W4200508691 cites W2100829250 @default.
- W4200508691 cites W2117014758 @default.
- W4200508691 cites W2132620360 @default.
- W4200508691 cites W2133454617 @default.
- W4200508691 cites W2580808806 @default.
- W4200508691 cites W2595470535 @default.
- W4200508691 cites W2769012269 @default.
- W4200508691 cites W2792985690 @default.
- W4200508691 cites W2885007278 @default.
- W4200508691 cites W2911287026 @default.
- W4200508691 cites W2913642840 @default.
- W4200508691 cites W2965856274 @default.
- W4200508691 cites W2997226100 @default.
- W4200508691 cites W3042384763 @default.
- W4200508691 cites W3045277478 @default.
- W4200508691 cites W3133227149 @default.
- W4200508691 cites W3156165270 @default.
- W4200508691 cites W3159743384 @default.
- W4200508691 cites W3188778250 @default.
- W4200508691 cites W3199950287 @default.
- W4200508691 cites W4241983685 @default.
- W4200508691 cites W4378764939 @default.
- W4200508691 doi "https://doi.org/10.3390/agronomy12010022" @default.
- W4200508691 hasPublicationYear "2021" @default.
- W4200508691 type Work @default.
- W4200508691 citedByCount "7" @default.
- W4200508691 countsByYear W42005086912022 @default.
- W4200508691 countsByYear W42005086912023 @default.
- W4200508691 crossrefType "journal-article" @default.
- W4200508691 hasAuthorship W4200508691A5003976392 @default.
- W4200508691 hasAuthorship W4200508691A5004154958 @default.
- W4200508691 hasAuthorship W4200508691A5015945151 @default.
- W4200508691 hasAuthorship W4200508691A5016006260 @default.
- W4200508691 hasAuthorship W4200508691A5016857992 @default.
- W4200508691 hasAuthorship W4200508691A5021453856 @default.
- W4200508691 hasAuthorship W4200508691A5024960664 @default.
- W4200508691 hasAuthorship W4200508691A5032149090 @default.
- W4200508691 hasAuthorship W4200508691A5032634360 @default.
- W4200508691 hasAuthorship W4200508691A5038380396 @default.
- W4200508691 hasAuthorship W4200508691A5043047410 @default.
- W4200508691 hasAuthorship W4200508691A5054393764 @default.
- W4200508691 hasAuthorship W4200508691A5071868202 @default.
- W4200508691 hasAuthorship W4200508691A5076706678 @default.
- W4200508691 hasAuthorship W4200508691A5087671219 @default.
- W4200508691 hasAuthorship W4200508691A5090860035 @default.
- W4200508691 hasBestOaLocation W42005086911 @default.
- W4200508691 hasConcept C105795698 @default.
- W4200508691 hasConcept C123963621 @default.
- W4200508691 hasConcept C144024400 @default.
- W4200508691 hasConcept C144027150 @default.
- W4200508691 hasConcept C149923435 @default.
- W4200508691 hasConcept C18903297 @default.
- W4200508691 hasConcept C22508944 @default.
- W4200508691 hasConcept C2777451525 @default.
- W4200508691 hasConcept C2778209801 @default.
- W4200508691 hasConcept C2778477800 @default.
- W4200508691 hasConcept C2908647359 @default.
- W4200508691 hasConcept C33923547 @default.
- W4200508691 hasConcept C45804977 @default.
- W4200508691 hasConcept C86803240 @default.
- W4200508691 hasConceptScore W4200508691C105795698 @default.
- W4200508691 hasConceptScore W4200508691C123963621 @default.
- W4200508691 hasConceptScore W4200508691C144024400 @default.
- W4200508691 hasConceptScore W4200508691C144027150 @default.
- W4200508691 hasConceptScore W4200508691C149923435 @default.
- W4200508691 hasConceptScore W4200508691C18903297 @default.
- W4200508691 hasConceptScore W4200508691C22508944 @default.
- W4200508691 hasConceptScore W4200508691C2777451525 @default.