Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200510097> ?p ?o ?g. }
- W4200510097 endingPage "66" @default.
- W4200510097 startingPage "57" @default.
- W4200510097 abstract "Myelination-related MR signal changes in white matter are helpful for assessing normal development in infants and children. A rule-based myelination evaluation workflow regarding signal changes on T1-weighted images (T1WIs) and T2-weighted images (T2WIs) has been widely used in radiology. This study aimed to simulate a rule-based workflow using a stacked deep learning model and evaluate age estimation accuracy.The age estimation system involved two stacked neural networks: a target network-to extract five myelination-related images from the whole brain, and an age estimation network from extracted T1- and T2WIs separately. A dataset was constructed from 119 children aged below 2 years with two MRI systems. A four-fold cross-validation method was adopted. The correlation coefficient (CC), mean absolute error (MAE), and root mean squared error (RMSE) of the corrected chronological age of full-term birth, as well as the mean difference and the upper and lower limits of 95% agreement, were measured. Generalization performance was assessed using datasets acquired from different MR images. Age estimation was performed in Sturge-Weber syndrome (SWS) cases.There was a strong correlation between estimated age and corrected chronological age (MAE: 0.98 months; RMSE: 1.27 months; and CC: 0.99). The mean difference and standard deviation (SD) were -0.15 and 1.26, respectively, and the upper and lower limits of 95% agreement were 2.33 and -2.63 months. Regarding generalization performance, the performance values on the external dataset were MAE of 1.85 months, RMSE of 2.59 months, and CC of 0.93. Among 13 SWS cases, 7 exceeded the limits of 95% agreement, and a proportional bias of age estimation based on myelination acceleration was exhibited below 12 months of age (P = 0.03).Stacked deep learning models automated the rule-based workflow in radiology and achieved highly accurate age estimation in infants and children up to 2 years of age." @default.
- W4200510097 created "2021-12-31" @default.
- W4200510097 creator A5001547949 @default.
- W4200510097 creator A5013892365 @default.
- W4200510097 creator A5014437117 @default.
- W4200510097 creator A5021128318 @default.
- W4200510097 creator A5024016547 @default.
- W4200510097 creator A5035117239 @default.
- W4200510097 creator A5036856096 @default.
- W4200510097 creator A5047392612 @default.
- W4200510097 creator A5051043193 @default.
- W4200510097 creator A5051543871 @default.
- W4200510097 creator A5056861795 @default.
- W4200510097 creator A5060878563 @default.
- W4200510097 creator A5079078810 @default.
- W4200510097 creator A5080347210 @default.
- W4200510097 creator A5081289489 @default.
- W4200510097 creator A5084465197 @default.
- W4200510097 creator A5090674915 @default.
- W4200510097 creator A5091368226 @default.
- W4200510097 date "2023-01-01" @default.
- W4200510097 modified "2023-10-18" @default.
- W4200510097 title "Automation of a Rule-based Workflow to Estimate Age from Brain MR Imaging of Infants and Children Up to 2 Years Old Using Stacked Deep Learning" @default.
- W4200510097 cites W136828434 @default.
- W4200510097 cites W1810962872 @default.
- W4200510097 cites W1973481710 @default.
- W4200510097 cites W1991159145 @default.
- W4200510097 cites W1994366606 @default.
- W4200510097 cites W1997717809 @default.
- W4200510097 cites W2003381811 @default.
- W4200510097 cites W2047410002 @default.
- W4200510097 cites W2053887731 @default.
- W4200510097 cites W2064675550 @default.
- W4200510097 cites W2064828728 @default.
- W4200510097 cites W2091987367 @default.
- W4200510097 cites W2092953822 @default.
- W4200510097 cites W2094809174 @default.
- W4200510097 cites W2110485445 @default.
- W4200510097 cites W2116016341 @default.
- W4200510097 cites W2123421700 @default.
- W4200510097 cites W2126888533 @default.
- W4200510097 cites W2133470640 @default.
- W4200510097 cites W2136848157 @default.
- W4200510097 cites W2157642981 @default.
- W4200510097 cites W2165532911 @default.
- W4200510097 cites W2194775991 @default.
- W4200510097 cites W2330374191 @default.
- W4200510097 cites W2563668776 @default.
- W4200510097 cites W2902620820 @default.
- W4200510097 cites W2919115771 @default.
- W4200510097 cites W2955780753 @default.
- W4200510097 cites W2962971773 @default.
- W4200510097 cites W2963420686 @default.
- W4200510097 cites W3094475074 @default.
- W4200510097 cites W3138063828 @default.
- W4200510097 doi "https://doi.org/10.2463/mrms.mp.2021-0068" @default.
- W4200510097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34897147" @default.
- W4200510097 hasPublicationYear "2023" @default.
- W4200510097 type Work @default.
- W4200510097 citedByCount "4" @default.
- W4200510097 countsByYear W42005100972023 @default.
- W4200510097 crossrefType "journal-article" @default.
- W4200510097 hasAuthorship W4200510097A5001547949 @default.
- W4200510097 hasAuthorship W4200510097A5013892365 @default.
- W4200510097 hasAuthorship W4200510097A5014437117 @default.
- W4200510097 hasAuthorship W4200510097A5021128318 @default.
- W4200510097 hasAuthorship W4200510097A5024016547 @default.
- W4200510097 hasAuthorship W4200510097A5035117239 @default.
- W4200510097 hasAuthorship W4200510097A5036856096 @default.
- W4200510097 hasAuthorship W4200510097A5047392612 @default.
- W4200510097 hasAuthorship W4200510097A5051043193 @default.
- W4200510097 hasAuthorship W4200510097A5051543871 @default.
- W4200510097 hasAuthorship W4200510097A5056861795 @default.
- W4200510097 hasAuthorship W4200510097A5060878563 @default.
- W4200510097 hasAuthorship W4200510097A5079078810 @default.
- W4200510097 hasAuthorship W4200510097A5080347210 @default.
- W4200510097 hasAuthorship W4200510097A5081289489 @default.
- W4200510097 hasAuthorship W4200510097A5084465197 @default.
- W4200510097 hasAuthorship W4200510097A5090674915 @default.
- W4200510097 hasAuthorship W4200510097A5091368226 @default.
- W4200510097 hasBestOaLocation W42005100971 @default.
- W4200510097 hasConcept C105795698 @default.
- W4200510097 hasConcept C117220453 @default.
- W4200510097 hasConcept C126838900 @default.
- W4200510097 hasConcept C134306372 @default.
- W4200510097 hasConcept C139945424 @default.
- W4200510097 hasConcept C143409427 @default.
- W4200510097 hasConcept C153180895 @default.
- W4200510097 hasConcept C154945302 @default.
- W4200510097 hasConcept C162324750 @default.
- W4200510097 hasConcept C177148314 @default.
- W4200510097 hasConcept C177212765 @default.
- W4200510097 hasConcept C18747219 @default.
- W4200510097 hasConcept C187736073 @default.
- W4200510097 hasConcept C188154048 @default.
- W4200510097 hasConcept C22679943 @default.
- W4200510097 hasConcept C2524010 @default.
- W4200510097 hasConcept C2780092901 @default.