Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200515712> ?p ?o ?g. }
- W4200515712 endingPage "17" @default.
- W4200515712 startingPage "1" @default.
- W4200515712 abstract "Visual faults in photovoltaic (PV) modules persist as a problem that can create consequences such as reduced life span, increased output power loss and raising safety concerns during operation. Increased manpower requirement, larger time consumption, confinement to single fault prediction and high initial cost are certain drawbacks of conventional fault diagnosis techniques. Recent advancements in technology and the innovation of scientific techniques have urged the need for advanced fault diagnosis techniques that deliver instantaneous results. In the present study, unmanned aerial vehicles (UAVs) were employed to capture images of PVM with visual faults. The most common visual faults in photovoltaic modules (PVM) are delamination, burn marks, glass breakage, discoloration, and snail trails. Each fault condition contains a unique image pattern appearance attributed to the particular type of fault. Such patterns are extracted using convolutional neural networks and classified with the help of decision tree algorithms. First, the features are extracted from these aerial images by utilizing pre-trained AlexNet convolutional neural networks. Secondly, the J48 decision tree algorithm is utilized to select the most significant and valuable features from the extracted image features. Finally, the classification is carried out with several decision tree algorithms such as decision stump, hoeffiding tree, J48, linear model tree (LMT), random forest, random tree, representative (REP) tree, best first (BF) tree, extra tree, functional tree (FT), J48 consolidated, J48 graft, least absolute deviation (LAD) tree, naïve bayes (NB) tree and simple cart. The classification accuracies of the algorithms mentioned above are compared to suggest the best-in-class algorithm for real-time application. Among all the available tree-based algorithms, the random forest algorithm produced a maximum classification accuracy of 98.25% with a computational time of 0.89 seconds." @default.
- W4200515712 created "2021-12-31" @default.
- W4200515712 creator A5032534129 @default.
- W4200515712 creator A5084510048 @default.
- W4200515712 date "2021-12-21" @default.
- W4200515712 modified "2023-10-18" @default.
- W4200515712 title "Visual fault detection in photovoltaic modules using decision tree algorithms with deep learning features" @default.
- W4200515712 cites W1965777081 @default.
- W4200515712 cites W2012028491 @default.
- W4200515712 cites W2068157365 @default.
- W4200515712 cites W2070881660 @default.
- W4200515712 cites W210314881 @default.
- W4200515712 cites W2157597705 @default.
- W4200515712 cites W2227381320 @default.
- W4200515712 cites W2467186333 @default.
- W4200515712 cites W2473336663 @default.
- W4200515712 cites W2539370512 @default.
- W4200515712 cites W2539970129 @default.
- W4200515712 cites W2562720677 @default.
- W4200515712 cites W2610398407 @default.
- W4200515712 cites W2612672733 @default.
- W4200515712 cites W2616219098 @default.
- W4200515712 cites W2618530766 @default.
- W4200515712 cites W2744281833 @default.
- W4200515712 cites W2760217853 @default.
- W4200515712 cites W2767142322 @default.
- W4200515712 cites W2795975941 @default.
- W4200515712 cites W2806915479 @default.
- W4200515712 cites W2825063406 @default.
- W4200515712 cites W2884792776 @default.
- W4200515712 cites W2888785828 @default.
- W4200515712 cites W2895777600 @default.
- W4200515712 cites W2897996667 @default.
- W4200515712 cites W2908220257 @default.
- W4200515712 cites W2916091221 @default.
- W4200515712 cites W2924092017 @default.
- W4200515712 cites W2945823963 @default.
- W4200515712 cites W2955168996 @default.
- W4200515712 cites W2965643259 @default.
- W4200515712 cites W2980326480 @default.
- W4200515712 cites W2999716783 @default.
- W4200515712 cites W3008241461 @default.
- W4200515712 cites W3011781975 @default.
- W4200515712 cites W3086648452 @default.
- W4200515712 cites W3087284879 @default.
- W4200515712 cites W3093291673 @default.
- W4200515712 cites W3172607123 @default.
- W4200515712 doi "https://doi.org/10.1080/15567036.2021.2020379" @default.
- W4200515712 hasPublicationYear "2021" @default.
- W4200515712 type Work @default.
- W4200515712 citedByCount "6" @default.
- W4200515712 countsByYear W42005157122022 @default.
- W4200515712 countsByYear W42005157122023 @default.
- W4200515712 crossrefType "journal-article" @default.
- W4200515712 hasAuthorship W4200515712A5032534129 @default.
- W4200515712 hasAuthorship W4200515712A5084510048 @default.
- W4200515712 hasConcept C107094494 @default.
- W4200515712 hasConcept C113174947 @default.
- W4200515712 hasConcept C11413529 @default.
- W4200515712 hasConcept C119857082 @default.
- W4200515712 hasConcept C12267149 @default.
- W4200515712 hasConcept C127313418 @default.
- W4200515712 hasConcept C127413603 @default.
- W4200515712 hasConcept C134306372 @default.
- W4200515712 hasConcept C138885662 @default.
- W4200515712 hasConcept C153180895 @default.
- W4200515712 hasConcept C154945302 @default.
- W4200515712 hasConcept C165205528 @default.
- W4200515712 hasConcept C169258074 @default.
- W4200515712 hasConcept C175551986 @default.
- W4200515712 hasConcept C200601418 @default.
- W4200515712 hasConcept C2776401178 @default.
- W4200515712 hasConcept C33923547 @default.
- W4200515712 hasConcept C41008148 @default.
- W4200515712 hasConcept C41895202 @default.
- W4200515712 hasConcept C52001869 @default.
- W4200515712 hasConcept C52003472 @default.
- W4200515712 hasConcept C81363708 @default.
- W4200515712 hasConcept C84525736 @default.
- W4200515712 hasConceptScore W4200515712C107094494 @default.
- W4200515712 hasConceptScore W4200515712C113174947 @default.
- W4200515712 hasConceptScore W4200515712C11413529 @default.
- W4200515712 hasConceptScore W4200515712C119857082 @default.
- W4200515712 hasConceptScore W4200515712C12267149 @default.
- W4200515712 hasConceptScore W4200515712C127313418 @default.
- W4200515712 hasConceptScore W4200515712C127413603 @default.
- W4200515712 hasConceptScore W4200515712C134306372 @default.
- W4200515712 hasConceptScore W4200515712C138885662 @default.
- W4200515712 hasConceptScore W4200515712C153180895 @default.
- W4200515712 hasConceptScore W4200515712C154945302 @default.
- W4200515712 hasConceptScore W4200515712C165205528 @default.
- W4200515712 hasConceptScore W4200515712C169258074 @default.
- W4200515712 hasConceptScore W4200515712C175551986 @default.
- W4200515712 hasConceptScore W4200515712C200601418 @default.
- W4200515712 hasConceptScore W4200515712C2776401178 @default.
- W4200515712 hasConceptScore W4200515712C33923547 @default.
- W4200515712 hasConceptScore W4200515712C41008148 @default.
- W4200515712 hasConceptScore W4200515712C41895202 @default.