Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200515943> ?p ?o ?g. }
- W4200515943 endingPage "015004" @default.
- W4200515943 startingPage "015004" @default.
- W4200515943 abstract "A bone scan is widely used for surveying bone metastases caused by various solid tumors. Scintigraphic images are characterized by inferior spatial resolution, bringing a significant challenge to manual analysis of images by nuclear medicine physicians. We present in this work a new framework for automatically classifying scintigraphic images collected from patients clinically diagnosed with lung cancer. The framework consists of data preparation and image classification. In the data preparation stage, data augmentation is used to enlarge the dataset, followed by image fusion and thoracic region extraction. In the image classification stage, we use a self-defined convolutional neural network consisting of feature extraction, feature aggregation, and feature classification sub-networks. The developed multi-class classification network can not only predict whether a bone scan image contains bone metastasis but also tell which subcategory of lung cancer that a bone metastasis metastasized from is present in the image. Experimental evaluations on a set of clinical bone scan images have shown that the proposed multi-class classification network is workable for automated classification of metastatic images, with achieving average scores of 0.7392, 0.7592, 0.7242, and 0.7292 for accuracy, precision, recall, and F-1 score, respectively." @default.
- W4200515943 created "2021-12-31" @default.
- W4200515943 creator A5003462637 @default.
- W4200515943 creator A5007941220 @default.
- W4200515943 creator A5010995240 @default.
- W4200515943 creator A5044137839 @default.
- W4200515943 creator A5051191089 @default.
- W4200515943 creator A5057823914 @default.
- W4200515943 creator A5072978209 @default.
- W4200515943 creator A5077528633 @default.
- W4200515943 date "2022-01-07" @default.
- W4200515943 modified "2023-10-03" @default.
- W4200515943 title "Automated detection of skeletal metastasis of lung cancer with bone scans using convolutional nuclear network" @default.
- W4200515943 cites W2005312471 @default.
- W4200515943 cites W2013132275 @default.
- W4200515943 cites W2078087645 @default.
- W4200515943 cites W2092501833 @default.
- W4200515943 cites W2095554214 @default.
- W4200515943 cites W2097117768 @default.
- W4200515943 cites W2106787323 @default.
- W4200515943 cites W2128631602 @default.
- W4200515943 cites W2140824213 @default.
- W4200515943 cites W2152526126 @default.
- W4200515943 cites W2194775991 @default.
- W4200515943 cites W2235523093 @default.
- W4200515943 cites W2501158386 @default.
- W4200515943 cites W2571282975 @default.
- W4200515943 cites W2592929672 @default.
- W4200515943 cites W2963446712 @default.
- W4200515943 cites W2971445890 @default.
- W4200515943 cites W2996060033 @default.
- W4200515943 cites W3005061589 @default.
- W4200515943 cites W3014605657 @default.
- W4200515943 cites W3035665735 @default.
- W4200515943 cites W3043289003 @default.
- W4200515943 cites W3046103539 @default.
- W4200515943 cites W3049521066 @default.
- W4200515943 cites W3080336025 @default.
- W4200515943 cites W3092312060 @default.
- W4200515943 cites W3094164911 @default.
- W4200515943 cites W3130593802 @default.
- W4200515943 cites W3132455321 @default.
- W4200515943 cites W3138784776 @default.
- W4200515943 cites W3155258968 @default.
- W4200515943 cites W3160874522 @default.
- W4200515943 cites W3189731981 @default.
- W4200515943 cites W3196572163 @default.
- W4200515943 doi "https://doi.org/10.1088/1361-6560/ac4565" @default.
- W4200515943 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34933282" @default.
- W4200515943 hasPublicationYear "2022" @default.
- W4200515943 type Work @default.
- W4200515943 citedByCount "13" @default.
- W4200515943 countsByYear W42005159432022 @default.
- W4200515943 countsByYear W42005159432023 @default.
- W4200515943 crossrefType "journal-article" @default.
- W4200515943 hasAuthorship W4200515943A5003462637 @default.
- W4200515943 hasAuthorship W4200515943A5007941220 @default.
- W4200515943 hasAuthorship W4200515943A5010995240 @default.
- W4200515943 hasAuthorship W4200515943A5044137839 @default.
- W4200515943 hasAuthorship W4200515943A5051191089 @default.
- W4200515943 hasAuthorship W4200515943A5057823914 @default.
- W4200515943 hasAuthorship W4200515943A5072978209 @default.
- W4200515943 hasAuthorship W4200515943A5077528633 @default.
- W4200515943 hasBestOaLocation W42005159431 @default.
- W4200515943 hasConcept C115961682 @default.
- W4200515943 hasConcept C121608353 @default.
- W4200515943 hasConcept C126322002 @default.
- W4200515943 hasConcept C126838900 @default.
- W4200515943 hasConcept C138885662 @default.
- W4200515943 hasConcept C142724271 @default.
- W4200515943 hasConcept C146357865 @default.
- W4200515943 hasConcept C151730666 @default.
- W4200515943 hasConcept C153180895 @default.
- W4200515943 hasConcept C154945302 @default.
- W4200515943 hasConcept C2776256026 @default.
- W4200515943 hasConcept C2776401178 @default.
- W4200515943 hasConcept C2777783956 @default.
- W4200515943 hasConcept C2779013556 @default.
- W4200515943 hasConcept C41008148 @default.
- W4200515943 hasConcept C41895202 @default.
- W4200515943 hasConcept C52622490 @default.
- W4200515943 hasConcept C58489278 @default.
- W4200515943 hasConcept C71924100 @default.
- W4200515943 hasConcept C75294576 @default.
- W4200515943 hasConcept C81363708 @default.
- W4200515943 hasConcept C86803240 @default.
- W4200515943 hasConceptScore W4200515943C115961682 @default.
- W4200515943 hasConceptScore W4200515943C121608353 @default.
- W4200515943 hasConceptScore W4200515943C126322002 @default.
- W4200515943 hasConceptScore W4200515943C126838900 @default.
- W4200515943 hasConceptScore W4200515943C138885662 @default.
- W4200515943 hasConceptScore W4200515943C142724271 @default.
- W4200515943 hasConceptScore W4200515943C146357865 @default.
- W4200515943 hasConceptScore W4200515943C151730666 @default.
- W4200515943 hasConceptScore W4200515943C153180895 @default.
- W4200515943 hasConceptScore W4200515943C154945302 @default.
- W4200515943 hasConceptScore W4200515943C2776256026 @default.
- W4200515943 hasConceptScore W4200515943C2776401178 @default.