Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200516166> ?p ?o ?g. }
- W4200516166 endingPage "1077" @default.
- W4200516166 startingPage "1062" @default.
- W4200516166 abstract "Photovoltaic power generation (PVPG) forecasting has attracted increasing research and industry attention due to its significance for energy management, infrastructure planning, and budgeting. Emerging deep learning (DL) models based on historical data have provided effective solutions for PVPG forecasting with great success. However, newly-constructed photovoltaic (NCPV) plants often lack collections of historical data, and thus it is difficult to forecast their future generation accurately. In this work, combining transfer learning (TL) and DL models, we initially propose two parameter-transferring strategies and a constrained long short-term memory (C-LSTM) model, to address the hourly day-ahead PVPG forecasting problem of NCPV plants. The K-nearest neighbors (KNN) algorithm is utilized to extract prior knowledge as physical constraints, which can guide the training process of C-LSTM. The performances of different TL methods combined with C-LSTM are evaluated specifically, and appropriate ones are determined accordingly. The proposed models are evaluated based on real-life datasets collected from actual PV plants in Australia. The results demonstrate that the proposed C-LSTM model outperforms the standard LSTM model with higher forecasting accuracy. In addition, the results also indicate that significant improvements in forecasting accuracy and stability can be obtained by the proposed TL strategies combined with C-LSTM, regardless of different sky conditions (i.e., clear sky, partly cloudy sky, and overcast sky), compared to the conventional machine learning and statistical models in the literature. The forecasting skill of the combined model has improved up to 68.4% compared with the reference persistence model." @default.
- W4200516166 created "2021-12-31" @default.
- W4200516166 creator A5076928257 @default.
- W4200516166 creator A5077129953 @default.
- W4200516166 creator A5090508999 @default.
- W4200516166 date "2022-02-01" @default.
- W4200516166 modified "2023-10-05" @default.
- W4200516166 title "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants" @default.
- W4200516166 cites W2018742491 @default.
- W4200516166 cites W2058662152 @default.
- W4200516166 cites W2078422764 @default.
- W4200516166 cites W2088786192 @default.
- W4200516166 cites W2094286293 @default.
- W4200516166 cites W2131774270 @default.
- W4200516166 cites W2159961704 @default.
- W4200516166 cites W2296521892 @default.
- W4200516166 cites W2315426463 @default.
- W4200516166 cites W2503373494 @default.
- W4200516166 cites W2551868040 @default.
- W4200516166 cites W2590910929 @default.
- W4200516166 cites W2621841909 @default.
- W4200516166 cites W2767559196 @default.
- W4200516166 cites W2769980131 @default.
- W4200516166 cites W2771149621 @default.
- W4200516166 cites W2889360708 @default.
- W4200516166 cites W2906239552 @default.
- W4200516166 cites W2907681011 @default.
- W4200516166 cites W2912623183 @default.
- W4200516166 cites W2946125582 @default.
- W4200516166 cites W2949891635 @default.
- W4200516166 cites W2960560113 @default.
- W4200516166 cites W2962879438 @default.
- W4200516166 cites W2980706627 @default.
- W4200516166 cites W2999000694 @default.
- W4200516166 cites W3006689658 @default.
- W4200516166 cites W3127890494 @default.
- W4200516166 cites W3133901049 @default.
- W4200516166 cites W3134570487 @default.
- W4200516166 cites W3190354123 @default.
- W4200516166 cites W3197588786 @default.
- W4200516166 cites W3198628050 @default.
- W4200516166 cites W774145425 @default.
- W4200516166 doi "https://doi.org/10.1016/j.renene.2021.12.104" @default.
- W4200516166 hasPublicationYear "2022" @default.
- W4200516166 type Work @default.
- W4200516166 citedByCount "24" @default.
- W4200516166 countsByYear W42005161662022 @default.
- W4200516166 countsByYear W42005161662023 @default.
- W4200516166 crossrefType "journal-article" @default.
- W4200516166 hasAuthorship W4200516166A5076928257 @default.
- W4200516166 hasAuthorship W4200516166A5077129953 @default.
- W4200516166 hasAuthorship W4200516166A5090508999 @default.
- W4200516166 hasBestOaLocation W42005161661 @default.
- W4200516166 hasConcept C108583219 @default.
- W4200516166 hasConcept C111919701 @default.
- W4200516166 hasConcept C112972136 @default.
- W4200516166 hasConcept C119599485 @default.
- W4200516166 hasConcept C119857082 @default.
- W4200516166 hasConcept C121332964 @default.
- W4200516166 hasConcept C127413603 @default.
- W4200516166 hasConcept C150899416 @default.
- W4200516166 hasConcept C153294291 @default.
- W4200516166 hasConcept C154945302 @default.
- W4200516166 hasConcept C163258240 @default.
- W4200516166 hasConcept C195452092 @default.
- W4200516166 hasConcept C41008148 @default.
- W4200516166 hasConcept C41291067 @default.
- W4200516166 hasConcept C61797465 @default.
- W4200516166 hasConcept C62520636 @default.
- W4200516166 hasConcept C73329638 @default.
- W4200516166 hasConcept C98045186 @default.
- W4200516166 hasConceptScore W4200516166C108583219 @default.
- W4200516166 hasConceptScore W4200516166C111919701 @default.
- W4200516166 hasConceptScore W4200516166C112972136 @default.
- W4200516166 hasConceptScore W4200516166C119599485 @default.
- W4200516166 hasConceptScore W4200516166C119857082 @default.
- W4200516166 hasConceptScore W4200516166C121332964 @default.
- W4200516166 hasConceptScore W4200516166C127413603 @default.
- W4200516166 hasConceptScore W4200516166C150899416 @default.
- W4200516166 hasConceptScore W4200516166C153294291 @default.
- W4200516166 hasConceptScore W4200516166C154945302 @default.
- W4200516166 hasConceptScore W4200516166C163258240 @default.
- W4200516166 hasConceptScore W4200516166C195452092 @default.
- W4200516166 hasConceptScore W4200516166C41008148 @default.
- W4200516166 hasConceptScore W4200516166C41291067 @default.
- W4200516166 hasConceptScore W4200516166C61797465 @default.
- W4200516166 hasConceptScore W4200516166C62520636 @default.
- W4200516166 hasConceptScore W4200516166C73329638 @default.
- W4200516166 hasConceptScore W4200516166C98045186 @default.
- W4200516166 hasLocation W42005161661 @default.
- W4200516166 hasOpenAccess W4200516166 @default.
- W4200516166 hasPrimaryLocation W42005161661 @default.
- W4200516166 hasRelatedWork W2889705046 @default.
- W4200516166 hasRelatedWork W2960456850 @default.
- W4200516166 hasRelatedWork W3192840557 @default.
- W4200516166 hasRelatedWork W4223943233 @default.
- W4200516166 hasRelatedWork W4312200629 @default.
- W4200516166 hasRelatedWork W4317565044 @default.