Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200518223> ?p ?o ?g. }
- W4200518223 endingPage "13294" @default.
- W4200518223 startingPage "13294" @default.
- W4200518223 abstract "Risk assessments for COVID-19 are the basis for formulating prevention and control strategies, especially at the micro scale. In a previous risk assessment model, various densities were regarded as the decisive driving factors of COVID-19 in the spatial dimension (population density, facility density, trajectory density, etc.). However, this conclusion ignored the fact that the densities were actually an abstract reflection of the contact frequency, which is a more essential determinant of epidemic transmission and lacked any means of corresponding quantitative correction. In this study, based on the facility density (FD), which has often been used in traditional research, a novel micro-scale COVID-19 risk predictor, facility attractiveness (FA, which has a better ability to reflect contact frequency), was proposed for improving the gravity model in combination with the differences in regional population density and mobility levels of an age-hierarchical population. An empirical analysis based on spatiotemporal modeling was carried out using geographically and temporally weighted regression (GTWR) in the Qingdao metropolitan area during the first wave of the pandemic. The spatiotemporally nonstationary relationships between facility density (attractiveness) and micro-risk of COVID-19 were revealed in the modeling results. The new predictors showed that residential areas and health-care facilities had more reasonable impacts than traditional densities. Compared with the model constructed using FDs (0.5159), the global prediction ability (adjusted R2) of the FA model (0.5694) was increased by 10.4%. The improvement in the local-scale prediction ability was more significant, especially in high-risk areas (rate: 107.2%) and densely populated areas (rate in Shinan District: 64.4%; rate in Shibei District: 57.8%) during the outset period. It was proven that the optimized predictors were more suitable for use in spatiotemporal infection risk modeling in the initial stage of regional epidemics than traditional predictors. These findings can provide methodological references and model-optimized ideas for future micro-scale spatiotemporal infection modeling." @default.
- W4200518223 created "2021-12-31" @default.
- W4200518223 creator A5013518754 @default.
- W4200518223 creator A5027283064 @default.
- W4200518223 creator A5034812806 @default.
- W4200518223 creator A5052737766 @default.
- W4200518223 date "2021-12-16" @default.
- W4200518223 modified "2023-10-17" @default.
- W4200518223 title "A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective" @default.
- W4200518223 cites W1558544358 @default.
- W4200518223 cites W1613775081 @default.
- W4200518223 cites W1971794754 @default.
- W4200518223 cites W1977869039 @default.
- W4200518223 cites W1979683229 @default.
- W4200518223 cites W1993723510 @default.
- W4200518223 cites W2018117618 @default.
- W4200518223 cites W2033701923 @default.
- W4200518223 cites W2037087844 @default.
- W4200518223 cites W2045066934 @default.
- W4200518223 cites W2057679965 @default.
- W4200518223 cites W2062994874 @default.
- W4200518223 cites W2103613143 @default.
- W4200518223 cites W2137398591 @default.
- W4200518223 cites W2158196600 @default.
- W4200518223 cites W2166611163 @default.
- W4200518223 cites W2168339025 @default.
- W4200518223 cites W2543618969 @default.
- W4200518223 cites W2586749094 @default.
- W4200518223 cites W2795419409 @default.
- W4200518223 cites W2923642526 @default.
- W4200518223 cites W2931714899 @default.
- W4200518223 cites W2952541691 @default.
- W4200518223 cites W2968868918 @default.
- W4200518223 cites W3003217347 @default.
- W4200518223 cites W3004397688 @default.
- W4200518223 cites W3007473125 @default.
- W4200518223 cites W3012769470 @default.
- W4200518223 cites W3012789146 @default.
- W4200518223 cites W3013594674 @default.
- W4200518223 cites W3013874785 @default.
- W4200518223 cites W3015926966 @default.
- W4200518223 cites W3016402618 @default.
- W4200518223 cites W3016555305 @default.
- W4200518223 cites W3017051018 @default.
- W4200518223 cites W3017185871 @default.
- W4200518223 cites W3019445951 @default.
- W4200518223 cites W3020041202 @default.
- W4200518223 cites W3020637112 @default.
- W4200518223 cites W3025947019 @default.
- W4200518223 cites W3026471529 @default.
- W4200518223 cites W3030736407 @default.
- W4200518223 cites W3032599380 @default.
- W4200518223 cites W3032742287 @default.
- W4200518223 cites W3033503930 @default.
- W4200518223 cites W3034285292 @default.
- W4200518223 cites W3034304416 @default.
- W4200518223 cites W3034823740 @default.
- W4200518223 cites W3036629380 @default.
- W4200518223 cites W3038524942 @default.
- W4200518223 cites W3042159355 @default.
- W4200518223 cites W3043734267 @default.
- W4200518223 cites W3044014021 @default.
- W4200518223 cites W3046447471 @default.
- W4200518223 cites W3047935284 @default.
- W4200518223 cites W3049131078 @default.
- W4200518223 cites W3080103188 @default.
- W4200518223 cites W3086406818 @default.
- W4200518223 cites W3089061454 @default.
- W4200518223 cites W3089628938 @default.
- W4200518223 cites W3090340240 @default.
- W4200518223 cites W3091855523 @default.
- W4200518223 cites W3106679799 @default.
- W4200518223 cites W3111632138 @default.
- W4200518223 cites W3113043360 @default.
- W4200518223 cites W3118813884 @default.
- W4200518223 cites W3126922656 @default.
- W4200518223 cites W3130743400 @default.
- W4200518223 cites W3140182234 @default.
- W4200518223 cites W3153636274 @default.
- W4200518223 cites W3157957859 @default.
- W4200518223 cites W3158795574 @default.
- W4200518223 cites W3158799256 @default.
- W4200518223 cites W3163838441 @default.
- W4200518223 cites W3165093051 @default.
- W4200518223 cites W3165457566 @default.
- W4200518223 cites W3175890643 @default.
- W4200518223 cites W3187622507 @default.
- W4200518223 doi "https://doi.org/10.3390/ijerph182413294" @default.
- W4200518223 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34948902" @default.
- W4200518223 hasPublicationYear "2021" @default.
- W4200518223 type Work @default.
- W4200518223 citedByCount "1" @default.
- W4200518223 countsByYear W42005182232023 @default.
- W4200518223 crossrefType "journal-article" @default.
- W4200518223 hasAuthorship W4200518223A5013518754 @default.
- W4200518223 hasAuthorship W4200518223A5027283064 @default.
- W4200518223 hasAuthorship W4200518223A5034812806 @default.
- W4200518223 hasAuthorship W4200518223A5052737766 @default.