Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200519332> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4200519332 endingPage "103465" @default.
- W4200519332 startingPage "103465" @default.
- W4200519332 abstract "Colorectal Cancer (CRC) has the highest mortality rate of all cancers and is currently the third leading cause of cancer-related death worldwide. The early detection and diagnosis of colorectal polyps are necessary for early interventional therapies. The use of AI and ML techniques to analyse colonoscopy images has been gaining traction in recent years for early and accurate detection of polyps and other colorectal abnormalities. Existing deep learning classification and detection methods of polyps are computationally intensive, restrict memory potency, require extensive training, and affect the optimization of hyperparameters. This makes them unsuitable for real-time applications and applications with limited computing resources. This paper proposes a Dual-Path Convolutional Neural Network (DP-CNN) to classify polyp and non-polyp patches from the colonoscopy images. The proposed approach comprises image enhancement followed by the use of DP-CNN architecture and a sigmoid classifier for efficient detection of polyps. The publicly available database CVC ClinicDB is used to train the proposed network, and it is tested on ETIS-Larib and CVC ColonDB databases. The testing accuracy of the network on CVC ColonDB and ETIS-Larib are 99.60%, 90.81%, respectively. The performance measures are as follows: precision (100%), recall (99.20%), F1 score (99.60%) and F2 score (99.83%) on CVC ColonDB database and precision (89.81%), recall (92.85%), F1 score (91.00%) and F2 score (89.91%) on ETIS-Larib database. Compared with other existing methods, the proposed approach outperforms in precision, recall, F1-score, and F2-score in both databases. The number of learnable parameters of the proposed method is 8737. The proposed approach is promising as an accurate polyp detection technique. It is applicable for real-time applications due to lower complexity and fewer learnable parameters than required by other existing methods." @default.
- W4200519332 created "2021-12-31" @default.
- W4200519332 creator A5004972470 @default.
- W4200519332 creator A5037939833 @default.
- W4200519332 creator A5047476310 @default.
- W4200519332 date "2022-03-01" @default.
- W4200519332 modified "2023-10-16" @default.
- W4200519332 title "Automated colorectal polyp detection based on image enhancement and dual-path CNN architecture" @default.
- W4200519332 cites W1917465580 @default.
- W4200519332 cites W2008359794 @default.
- W4200519332 cites W2019959635 @default.
- W4200519332 cites W2021088830 @default.
- W4200519332 cites W2034269173 @default.
- W4200519332 cites W2054367831 @default.
- W4200519332 cites W2063979222 @default.
- W4200519332 cites W2094155432 @default.
- W4200519332 cites W2196262949 @default.
- W4200519332 cites W2586952804 @default.
- W4200519332 cites W2760303371 @default.
- W4200519332 cites W2781104951 @default.
- W4200519332 cites W2794393374 @default.
- W4200519332 cites W2806175674 @default.
- W4200519332 cites W2903727724 @default.
- W4200519332 cites W2906424845 @default.
- W4200519332 cites W2949510311 @default.
- W4200519332 cites W2974356752 @default.
- W4200519332 cites W2979617155 @default.
- W4200519332 cites W3002888738 @default.
- W4200519332 cites W3009963727 @default.
- W4200519332 cites W3024262873 @default.
- W4200519332 cites W3027658921 @default.
- W4200519332 cites W3036172711 @default.
- W4200519332 cites W3037014213 @default.
- W4200519332 cites W3044711955 @default.
- W4200519332 cites W3047228909 @default.
- W4200519332 cites W3082338171 @default.
- W4200519332 cites W3157358059 @default.
- W4200519332 doi "https://doi.org/10.1016/j.bspc.2021.103465" @default.
- W4200519332 hasPublicationYear "2022" @default.
- W4200519332 type Work @default.
- W4200519332 citedByCount "12" @default.
- W4200519332 countsByYear W42005193322022 @default.
- W4200519332 countsByYear W42005193322023 @default.
- W4200519332 crossrefType "journal-article" @default.
- W4200519332 hasAuthorship W4200519332A5004972470 @default.
- W4200519332 hasAuthorship W4200519332A5037939833 @default.
- W4200519332 hasAuthorship W4200519332A5047476310 @default.
- W4200519332 hasConcept C100660578 @default.
- W4200519332 hasConcept C108583219 @default.
- W4200519332 hasConcept C121608353 @default.
- W4200519332 hasConcept C126322002 @default.
- W4200519332 hasConcept C138885662 @default.
- W4200519332 hasConcept C148524875 @default.
- W4200519332 hasConcept C153180895 @default.
- W4200519332 hasConcept C154945302 @default.
- W4200519332 hasConcept C2778435480 @default.
- W4200519332 hasConcept C41008148 @default.
- W4200519332 hasConcept C41895202 @default.
- W4200519332 hasConcept C526805850 @default.
- W4200519332 hasConcept C71924100 @default.
- W4200519332 hasConcept C81363708 @default.
- W4200519332 hasConcept C81669768 @default.
- W4200519332 hasConcept C8642999 @default.
- W4200519332 hasConcept C95623464 @default.
- W4200519332 hasConceptScore W4200519332C100660578 @default.
- W4200519332 hasConceptScore W4200519332C108583219 @default.
- W4200519332 hasConceptScore W4200519332C121608353 @default.
- W4200519332 hasConceptScore W4200519332C126322002 @default.
- W4200519332 hasConceptScore W4200519332C138885662 @default.
- W4200519332 hasConceptScore W4200519332C148524875 @default.
- W4200519332 hasConceptScore W4200519332C153180895 @default.
- W4200519332 hasConceptScore W4200519332C154945302 @default.
- W4200519332 hasConceptScore W4200519332C2778435480 @default.
- W4200519332 hasConceptScore W4200519332C41008148 @default.
- W4200519332 hasConceptScore W4200519332C41895202 @default.
- W4200519332 hasConceptScore W4200519332C526805850 @default.
- W4200519332 hasConceptScore W4200519332C71924100 @default.
- W4200519332 hasConceptScore W4200519332C81363708 @default.
- W4200519332 hasConceptScore W4200519332C81669768 @default.
- W4200519332 hasConceptScore W4200519332C8642999 @default.
- W4200519332 hasConceptScore W4200519332C95623464 @default.
- W4200519332 hasLocation W42005193321 @default.
- W4200519332 hasOpenAccess W4200519332 @default.
- W4200519332 hasPrimaryLocation W42005193321 @default.
- W4200519332 hasRelatedWork W2732542196 @default.
- W4200519332 hasRelatedWork W2738221750 @default.
- W4200519332 hasRelatedWork W2964383635 @default.
- W4200519332 hasRelatedWork W2986507176 @default.
- W4200519332 hasRelatedWork W2995914718 @default.
- W4200519332 hasRelatedWork W3130227562 @default.
- W4200519332 hasRelatedWork W3156786002 @default.
- W4200519332 hasRelatedWork W3166467183 @default.
- W4200519332 hasRelatedWork W4304182771 @default.
- W4200519332 hasRelatedWork W564581980 @default.
- W4200519332 hasVolume "73" @default.
- W4200519332 isParatext "false" @default.
- W4200519332 isRetracted "false" @default.
- W4200519332 workType "article" @default.