Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200522034> ?p ?o ?g. }
- W4200522034 endingPage "3668" @default.
- W4200522034 startingPage "3653" @default.
- W4200522034 abstract "Abstract In this present work, polynomial and artificial neural networks models, adjusted by particle swarm optimization, were implemented in an attempt to improve process modelling and to achieve reliable reaction representation behaviour. Parameter optimization of the conversion reaction of ferrous to ferric sulphate in concentrated solutions using hydrogen peroxide as an oxidant is a process of interest due to the importance of producing this ferric salt, a widely used coagulant/flocculant in water treatment, as a chlorine‐free product. Previous work reported a process optimization attempt based on a factorial design of experiments. The obtained polynomial model based on least‐squares showed a minimally satisfactory R 2 of 0.7481. The comparison of the obtained models' performance showed a significant improvement in the prediction of experimental conditions. The results indicated that artificial neural networks‐based models presented a higher predictive capability for highly non‐linear experimental data, and the best model achieved an R 2 of 0.9744 for the conversion prediction. Optimal ranges for cost‐effective process conditions were investigated through the refined response surface charts obtained." @default.
- W4200522034 created "2021-12-31" @default.
- W4200522034 creator A5057163044 @default.
- W4200522034 creator A5066684069 @default.
- W4200522034 creator A5068868329 @default.
- W4200522034 creator A5075942480 @default.
- W4200522034 creator A5080404639 @default.
- W4200522034 date "2022-03-10" @default.
- W4200522034 modified "2023-10-05" @default.
- W4200522034 title "Modelling and optimization of the ferrous to ferric sulphate conversion with hydrogen peroxide using <scp>polynomial‐PSO</scp> and <scp>PSO‐ANNs</scp> models" @default.
- W4200522034 cites W1520438336 @default.
- W4200522034 cites W1967220039 @default.
- W4200522034 cites W1967984071 @default.
- W4200522034 cites W1978998906 @default.
- W4200522034 cites W1986909143 @default.
- W4200522034 cites W2003487925 @default.
- W4200522034 cites W2005322163 @default.
- W4200522034 cites W2013183244 @default.
- W4200522034 cites W2024477500 @default.
- W4200522034 cites W2033098669 @default.
- W4200522034 cites W2039760851 @default.
- W4200522034 cites W2060126995 @default.
- W4200522034 cites W2063690478 @default.
- W4200522034 cites W2066296042 @default.
- W4200522034 cites W2071434227 @default.
- W4200522034 cites W2080365537 @default.
- W4200522034 cites W2082575730 @default.
- W4200522034 cites W2083669451 @default.
- W4200522034 cites W2088505865 @default.
- W4200522034 cites W2091162263 @default.
- W4200522034 cites W2112027230 @default.
- W4200522034 cites W2116989430 @default.
- W4200522034 cites W2163577459 @default.
- W4200522034 cites W2169053895 @default.
- W4200522034 cites W2218361395 @default.
- W4200522034 cites W2331211792 @default.
- W4200522034 cites W2758099882 @default.
- W4200522034 cites W2759536817 @default.
- W4200522034 cites W2768649183 @default.
- W4200522034 cites W2782143329 @default.
- W4200522034 cites W2806867424 @default.
- W4200522034 cites W2884441021 @default.
- W4200522034 cites W2885441463 @default.
- W4200522034 cites W2886078238 @default.
- W4200522034 cites W2888568269 @default.
- W4200522034 cites W2891681588 @default.
- W4200522034 cites W2897060193 @default.
- W4200522034 cites W2910234681 @default.
- W4200522034 cites W2947565845 @default.
- W4200522034 cites W2963541545 @default.
- W4200522034 cites W2970404112 @default.
- W4200522034 cites W2972614343 @default.
- W4200522034 cites W2984342775 @default.
- W4200522034 cites W2987110848 @default.
- W4200522034 cites W2997818552 @default.
- W4200522034 cites W3047319676 @default.
- W4200522034 cites W3047626361 @default.
- W4200522034 cites W3153748829 @default.
- W4200522034 cites W3157053688 @default.
- W4200522034 cites W4244149583 @default.
- W4200522034 doi "https://doi.org/10.1002/cjce.24349" @default.
- W4200522034 hasPublicationYear "2022" @default.
- W4200522034 type Work @default.
- W4200522034 citedByCount "0" @default.
- W4200522034 crossrefType "journal-article" @default.
- W4200522034 hasAuthorship W4200522034A5057163044 @default.
- W4200522034 hasAuthorship W4200522034A5066684069 @default.
- W4200522034 hasAuthorship W4200522034A5068868329 @default.
- W4200522034 hasAuthorship W4200522034A5075942480 @default.
- W4200522034 hasAuthorship W4200522034A5080404639 @default.
- W4200522034 hasConcept C105795698 @default.
- W4200522034 hasConcept C119857082 @default.
- W4200522034 hasConcept C126255220 @default.
- W4200522034 hasConcept C134306372 @default.
- W4200522034 hasConcept C138029060 @default.
- W4200522034 hasConcept C150077022 @default.
- W4200522034 hasConcept C154945302 @default.
- W4200522034 hasConcept C169222746 @default.
- W4200522034 hasConcept C178790620 @default.
- W4200522034 hasConcept C185592680 @default.
- W4200522034 hasConcept C186060115 @default.
- W4200522034 hasConcept C2775832776 @default.
- W4200522034 hasConcept C2780534640 @default.
- W4200522034 hasConcept C33923547 @default.
- W4200522034 hasConcept C34559072 @default.
- W4200522034 hasConcept C41008148 @default.
- W4200522034 hasConcept C43617362 @default.
- W4200522034 hasConcept C50644808 @default.
- W4200522034 hasConcept C533411734 @default.
- W4200522034 hasConcept C85617194 @default.
- W4200522034 hasConcept C86803240 @default.
- W4200522034 hasConcept C90119067 @default.
- W4200522034 hasConceptScore W4200522034C105795698 @default.
- W4200522034 hasConceptScore W4200522034C119857082 @default.
- W4200522034 hasConceptScore W4200522034C126255220 @default.
- W4200522034 hasConceptScore W4200522034C134306372 @default.
- W4200522034 hasConceptScore W4200522034C138029060 @default.
- W4200522034 hasConceptScore W4200522034C150077022 @default.