Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200524076> ?p ?o ?g. }
- W4200524076 endingPage "106567" @default.
- W4200524076 startingPage "106567" @default.
- W4200524076 abstract "Accurate detection of vessel bifurcation points from mesoscopic whole-brain images plays an important role in reconstructing cerebrovascular networks and understanding the pathogenesis of brain diseases. Existing detection methods are either less accurate or inefficient. In this paper, we propose VBNet, an end-to-end, one-stage neural network to detect vessel bifurcation points in 3D images.Firstly, we designed a 3D convolutional neural network (CNN), which input a 3D image and output the coordinates of bifurcation points in this image. The network contains a two-scale architecture to detect large bifurcation points and small bifurcation points, respectively, which takes into account the accuracy and efficiency of detection. Then, to solve the problem of low accuracy caused by the imbalance between the numbers of large bifurcations and small bifurcations, we designed a weighted loss function based on the radius distribution of blood vessels. Finally, we extended the method to detect bifurcation points in large-scale volumes.The proposed method was tested on two mouse cerebral vascular datasets and a synthetic dataset. In the synthetic dataset, the F1-score of the proposed method reached 96.37%. In two real datasets, the F1-score was 92.35% and 86.18%, respectively. The detection effect of the proposed method reached the state-of-the-art level.We proposed a novel method for detecting vessel bifurcation points in 3D images. It can be used to precisely locate vessel bifurcations from various cerebrovascular images. This method can be further used to reconstruct and analyze vascular networks, and also for researchers to design detection methods for other targets in 3D biomedical images." @default.
- W4200524076 created "2021-12-31" @default.
- W4200524076 creator A5002803940 @default.
- W4200524076 creator A5017229676 @default.
- W4200524076 creator A5038685546 @default.
- W4200524076 creator A5046113804 @default.
- W4200524076 creator A5069263111 @default.
- W4200524076 creator A5073996645 @default.
- W4200524076 date "2022-02-01" @default.
- W4200524076 modified "2023-10-14" @default.
- W4200524076 title "VBNet: An end-to-end 3D neural network for vessel bifurcation point detection in mesoscopic brain images" @default.
- W4200524076 cites W1968901737 @default.
- W4200524076 cites W2011650974 @default.
- W4200524076 cites W2016277672 @default.
- W4200524076 cites W2028372123 @default.
- W4200524076 cites W2040490831 @default.
- W4200524076 cites W2044290154 @default.
- W4200524076 cites W2047951563 @default.
- W4200524076 cites W2048733914 @default.
- W4200524076 cites W2135534896 @default.
- W4200524076 cites W2153965609 @default.
- W4200524076 cites W2202170526 @default.
- W4200524076 cites W2209890352 @default.
- W4200524076 cites W2467946152 @default.
- W4200524076 cites W2616216465 @default.
- W4200524076 cites W2741560111 @default.
- W4200524076 cites W2756343653 @default.
- W4200524076 cites W2979910668 @default.
- W4200524076 cites W2993349546 @default.
- W4200524076 cites W3006529112 @default.
- W4200524076 cites W3012387312 @default.
- W4200524076 cites W3112980510 @default.
- W4200524076 cites W3134405878 @default.
- W4200524076 cites W3134409008 @default.
- W4200524076 cites W639708223 @default.
- W4200524076 doi "https://doi.org/10.1016/j.cmpb.2021.106567" @default.
- W4200524076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34906786" @default.
- W4200524076 hasPublicationYear "2022" @default.
- W4200524076 type Work @default.
- W4200524076 citedByCount "2" @default.
- W4200524076 countsByYear W42005240762022 @default.
- W4200524076 crossrefType "journal-article" @default.
- W4200524076 hasAuthorship W4200524076A5002803940 @default.
- W4200524076 hasAuthorship W4200524076A5017229676 @default.
- W4200524076 hasAuthorship W4200524076A5038685546 @default.
- W4200524076 hasAuthorship W4200524076A5046113804 @default.
- W4200524076 hasAuthorship W4200524076A5069263111 @default.
- W4200524076 hasAuthorship W4200524076A5073996645 @default.
- W4200524076 hasConcept C11413529 @default.
- W4200524076 hasConcept C115961682 @default.
- W4200524076 hasConcept C121332964 @default.
- W4200524076 hasConcept C153180895 @default.
- W4200524076 hasConcept C154945302 @default.
- W4200524076 hasConcept C158622935 @default.
- W4200524076 hasConcept C2524010 @default.
- W4200524076 hasConcept C2778755073 @default.
- W4200524076 hasConcept C2781349735 @default.
- W4200524076 hasConcept C28719098 @default.
- W4200524076 hasConcept C31972630 @default.
- W4200524076 hasConcept C33923547 @default.
- W4200524076 hasConcept C41008148 @default.
- W4200524076 hasConcept C50644808 @default.
- W4200524076 hasConcept C62520636 @default.
- W4200524076 hasConcept C81363708 @default.
- W4200524076 hasConcept C85075877 @default.
- W4200524076 hasConceptScore W4200524076C11413529 @default.
- W4200524076 hasConceptScore W4200524076C115961682 @default.
- W4200524076 hasConceptScore W4200524076C121332964 @default.
- W4200524076 hasConceptScore W4200524076C153180895 @default.
- W4200524076 hasConceptScore W4200524076C154945302 @default.
- W4200524076 hasConceptScore W4200524076C158622935 @default.
- W4200524076 hasConceptScore W4200524076C2524010 @default.
- W4200524076 hasConceptScore W4200524076C2778755073 @default.
- W4200524076 hasConceptScore W4200524076C2781349735 @default.
- W4200524076 hasConceptScore W4200524076C28719098 @default.
- W4200524076 hasConceptScore W4200524076C31972630 @default.
- W4200524076 hasConceptScore W4200524076C33923547 @default.
- W4200524076 hasConceptScore W4200524076C41008148 @default.
- W4200524076 hasConceptScore W4200524076C50644808 @default.
- W4200524076 hasConceptScore W4200524076C62520636 @default.
- W4200524076 hasConceptScore W4200524076C81363708 @default.
- W4200524076 hasConceptScore W4200524076C85075877 @default.
- W4200524076 hasFunder F4320321001 @default.
- W4200524076 hasFunder F4320325573 @default.
- W4200524076 hasFunder F4320325627 @default.
- W4200524076 hasFunder F4320335467 @default.
- W4200524076 hasLocation W42005240761 @default.
- W4200524076 hasLocation W42005240762 @default.
- W4200524076 hasOpenAccess W4200524076 @default.
- W4200524076 hasPrimaryLocation W42005240761 @default.
- W4200524076 hasRelatedWork W2175746458 @default.
- W4200524076 hasRelatedWork W2613736958 @default.
- W4200524076 hasRelatedWork W2732542196 @default.
- W4200524076 hasRelatedWork W2738221750 @default.
- W4200524076 hasRelatedWork W2760085659 @default.
- W4200524076 hasRelatedWork W2883200793 @default.
- W4200524076 hasRelatedWork W2912288872 @default.
- W4200524076 hasRelatedWork W3012978760 @default.