Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200529106> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4200529106 abstract "Electrocardiogram (ECG) signals convey immense information that, when properly processed, can be used to diagnose various health conditions including arrhythmia and heart failure. Deep learning algorithms have been successfully applied to medical diagnosis, but existing methods heavily rely on abundant high-quality annotations which are expensive. Self-supervised learning (SSL) circumvents this annotation cost by pre-training deep neural networks (DNNs) on auxiliary tasks that do not require manual annotation. Despite its imminent need, SSL applications to ECG classification remain under-explored. In this work, we propose an SSL algorithm based on ECG delineation and show its effectiveness for arrhythmia classification. Our experiments demonstrate not only how the proposed algorithm enhances the DNN’s performance across various datasets and fractions of labeled data, but also how features learnt via pre-training on one dataset can be trans-ferred when fine-tuned on a different dataset." @default.
- W4200529106 created "2021-12-31" @default.
- W4200529106 creator A5043550754 @default.
- W4200529106 creator A5047510119 @default.
- W4200529106 creator A5057551093 @default.
- W4200529106 creator A5075656090 @default.
- W4200529106 date "2021-11-01" @default.
- W4200529106 modified "2023-09-25" @default.
- W4200529106 title "Self-Supervised Learning with Electrocardiogram Delineation for Arrhythmia Detection" @default.
- W4200529106 cites W2127510558 @default.
- W4200529106 cites W2163430278 @default.
- W4200529106 cites W2321533354 @default.
- W4200529106 cites W2888456553 @default.
- W4200529106 cites W2900744778 @default.
- W4200529106 cites W2902644322 @default.
- W4200529106 cites W2912522881 @default.
- W4200529106 cites W2913939497 @default.
- W4200529106 cites W2965520043 @default.
- W4200529106 cites W2991391304 @default.
- W4200529106 cites W2996959172 @default.
- W4200529106 cites W3027572331 @default.
- W4200529106 cites W4214540058 @default.
- W4200529106 doi "https://doi.org/10.1109/embc46164.2021.9630364" @default.
- W4200529106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34891363" @default.
- W4200529106 hasPublicationYear "2021" @default.
- W4200529106 type Work @default.
- W4200529106 citedByCount "4" @default.
- W4200529106 countsByYear W42005291062022 @default.
- W4200529106 countsByYear W42005291062023 @default.
- W4200529106 crossrefType "proceedings-article" @default.
- W4200529106 hasAuthorship W4200529106A5043550754 @default.
- W4200529106 hasAuthorship W4200529106A5047510119 @default.
- W4200529106 hasAuthorship W4200529106A5057551093 @default.
- W4200529106 hasAuthorship W4200529106A5075656090 @default.
- W4200529106 hasConcept C108583219 @default.
- W4200529106 hasConcept C119857082 @default.
- W4200529106 hasConcept C124101348 @default.
- W4200529106 hasConcept C153180895 @default.
- W4200529106 hasConcept C154945302 @default.
- W4200529106 hasConcept C164705383 @default.
- W4200529106 hasConcept C2776145971 @default.
- W4200529106 hasConcept C2776321320 @default.
- W4200529106 hasConcept C2779161974 @default.
- W4200529106 hasConcept C2984842247 @default.
- W4200529106 hasConcept C2988455589 @default.
- W4200529106 hasConcept C41008148 @default.
- W4200529106 hasConcept C50644808 @default.
- W4200529106 hasConcept C51632099 @default.
- W4200529106 hasConcept C71924100 @default.
- W4200529106 hasConceptScore W4200529106C108583219 @default.
- W4200529106 hasConceptScore W4200529106C119857082 @default.
- W4200529106 hasConceptScore W4200529106C124101348 @default.
- W4200529106 hasConceptScore W4200529106C153180895 @default.
- W4200529106 hasConceptScore W4200529106C154945302 @default.
- W4200529106 hasConceptScore W4200529106C164705383 @default.
- W4200529106 hasConceptScore W4200529106C2776145971 @default.
- W4200529106 hasConceptScore W4200529106C2776321320 @default.
- W4200529106 hasConceptScore W4200529106C2779161974 @default.
- W4200529106 hasConceptScore W4200529106C2984842247 @default.
- W4200529106 hasConceptScore W4200529106C2988455589 @default.
- W4200529106 hasConceptScore W4200529106C41008148 @default.
- W4200529106 hasConceptScore W4200529106C50644808 @default.
- W4200529106 hasConceptScore W4200529106C51632099 @default.
- W4200529106 hasConceptScore W4200529106C71924100 @default.
- W4200529106 hasLocation W42005291061 @default.
- W4200529106 hasLocation W42005291062 @default.
- W4200529106 hasOpenAccess W4200529106 @default.
- W4200529106 hasPrimaryLocation W42005291061 @default.
- W4200529106 hasRelatedWork W2889705046 @default.
- W4200529106 hasRelatedWork W3014300295 @default.
- W4200529106 hasRelatedWork W3164822677 @default.
- W4200529106 hasRelatedWork W4223943233 @default.
- W4200529106 hasRelatedWork W4225161397 @default.
- W4200529106 hasRelatedWork W4312200629 @default.
- W4200529106 hasRelatedWork W4360585206 @default.
- W4200529106 hasRelatedWork W4364306694 @default.
- W4200529106 hasRelatedWork W4380075502 @default.
- W4200529106 hasRelatedWork W4380086463 @default.
- W4200529106 isParatext "false" @default.
- W4200529106 isRetracted "false" @default.
- W4200529106 workType "article" @default.