Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200529581> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4200529581 abstract "Abstract Binding sites are concave surfaces on proteins that bind to small molecules called ligands. Types of molecules that bind to the protein determine its biological function. Meanwhile, the binding process between small molecules and the protein is also crucial to various biological functionalities. Therefore, identifying and classifying such binding sites would enormously contribute to biomedical applications such as drug repurposing. Deep learning is a modern artificial intelligence technology. It utilizes deep neural networks to handle complex tasks such as image classification and language translation. Previous work has proven the capability of deep learning models handle binding sites wherein the binding sites are represented as pixels or voxels. Graph neural networks (GNNs) are deep learning models that operate on graphs. GNNs are promising for handling binding sites related tasks - provided there is an adequate graph representation to model the binding sties. In this communication, we describe a GNN-based computational method, GraphSite, that utilizes a novel graph representation of ligand-binding sites. A state-of-the-art GNN model is trained to capture the intrinsic characteristics of these binding sites and classify them. Our model generalizes well to unseen data and achieves test accuracy of 81.28% on classifying 14 binding site classes." @default.
- W4200529581 created "2021-12-31" @default.
- W4200529581 creator A5001944128 @default.
- W4200529581 creator A5017574364 @default.
- W4200529581 creator A5029424274 @default.
- W4200529581 creator A5033579800 @default.
- W4200529581 creator A5080426784 @default.
- W4200529581 date "2021-12-07" @default.
- W4200529581 modified "2023-09-27" @default.
- W4200529581 title "Graphsite: ligand-binding site classification using deep graph neural network" @default.
- W4200529581 cites W125577685 @default.
- W4200529581 cites W2028629022 @default.
- W4200529581 cites W2050077513 @default.
- W4200529581 cites W2064675550 @default.
- W4200529581 cites W2083589318 @default.
- W4200529581 cites W2126234813 @default.
- W4200529581 cites W2134967712 @default.
- W4200529581 cites W2171653734 @default.
- W4200529581 cites W2211863317 @default.
- W4200529581 cites W2335469959 @default.
- W4200529581 cites W2558748708 @default.
- W4200529581 cites W2617750324 @default.
- W4200529581 cites W2902040414 @default.
- W4200529581 cites W2914877211 @default.
- W4200529581 cites W2924545821 @default.
- W4200529581 cites W2963150697 @default.
- W4200529581 cites W2963351448 @default.
- W4200529581 cites W2964304707 @default.
- W4200529581 cites W2969996838 @default.
- W4200529581 cites W3005364306 @default.
- W4200529581 cites W3005960521 @default.
- W4200529581 cites W3099206234 @default.
- W4200529581 cites W3138125462 @default.
- W4200529581 doi "https://doi.org/10.1101/2021.12.06.471420" @default.
- W4200529581 hasPublicationYear "2021" @default.
- W4200529581 type Work @default.
- W4200529581 citedByCount "1" @default.
- W4200529581 countsByYear W42005295812023 @default.
- W4200529581 crossrefType "posted-content" @default.
- W4200529581 hasAuthorship W4200529581A5001944128 @default.
- W4200529581 hasAuthorship W4200529581A5017574364 @default.
- W4200529581 hasAuthorship W4200529581A5029424274 @default.
- W4200529581 hasAuthorship W4200529581A5033579800 @default.
- W4200529581 hasAuthorship W4200529581A5080426784 @default.
- W4200529581 hasBestOaLocation W42005295811 @default.
- W4200529581 hasConcept C107824862 @default.
- W4200529581 hasConcept C108583219 @default.
- W4200529581 hasConcept C119857082 @default.
- W4200529581 hasConcept C132525143 @default.
- W4200529581 hasConcept C154945302 @default.
- W4200529581 hasConcept C17744445 @default.
- W4200529581 hasConcept C185592680 @default.
- W4200529581 hasConcept C199539241 @default.
- W4200529581 hasConcept C2776359362 @default.
- W4200529581 hasConcept C41008148 @default.
- W4200529581 hasConcept C50644808 @default.
- W4200529581 hasConcept C55493867 @default.
- W4200529581 hasConcept C80444323 @default.
- W4200529581 hasConcept C94625758 @default.
- W4200529581 hasConceptScore W4200529581C107824862 @default.
- W4200529581 hasConceptScore W4200529581C108583219 @default.
- W4200529581 hasConceptScore W4200529581C119857082 @default.
- W4200529581 hasConceptScore W4200529581C132525143 @default.
- W4200529581 hasConceptScore W4200529581C154945302 @default.
- W4200529581 hasConceptScore W4200529581C17744445 @default.
- W4200529581 hasConceptScore W4200529581C185592680 @default.
- W4200529581 hasConceptScore W4200529581C199539241 @default.
- W4200529581 hasConceptScore W4200529581C2776359362 @default.
- W4200529581 hasConceptScore W4200529581C41008148 @default.
- W4200529581 hasConceptScore W4200529581C50644808 @default.
- W4200529581 hasConceptScore W4200529581C55493867 @default.
- W4200529581 hasConceptScore W4200529581C80444323 @default.
- W4200529581 hasConceptScore W4200529581C94625758 @default.
- W4200529581 hasLocation W42005295811 @default.
- W4200529581 hasOpenAccess W4200529581 @default.
- W4200529581 hasPrimaryLocation W42005295811 @default.
- W4200529581 hasRelatedWork W3014300295 @default.
- W4200529581 hasRelatedWork W3164822677 @default.
- W4200529581 hasRelatedWork W4223943233 @default.
- W4200529581 hasRelatedWork W4225161397 @default.
- W4200529581 hasRelatedWork W4309045103 @default.
- W4200529581 hasRelatedWork W4312200629 @default.
- W4200529581 hasRelatedWork W4360585206 @default.
- W4200529581 hasRelatedWork W4364306694 @default.
- W4200529581 hasRelatedWork W4380075502 @default.
- W4200529581 hasRelatedWork W4380086463 @default.
- W4200529581 isParatext "false" @default.
- W4200529581 isRetracted "false" @default.
- W4200529581 workType "article" @default.