Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200533013> ?p ?o ?g. }
- W4200533013 endingPage "5072" @default.
- W4200533013 startingPage "5072" @default.
- W4200533013 abstract "Land surface temperature (LST) is an essential parameter widely used in environmental studies. The Medium Resolution Spectral Imager II (MERSI-II) boarded on the second generation Chinese polar-orbiting meteorological satellite, Fengyun-3D (FY-3D), provides a new opportunity for LST retrieval at a spatial resolution of 250 m that is higher than that of the already widely used Moderate Resolution Imaging Spectrometer (MODIS) LST data of 1000 m. However, there is no operational LST product from FY-3D MERSI-II data available for free access. Therefore, in this study, we developed an improved two-factor split-window algorithm (TFSWA) of LST retrieval from this data source as it has two thermal-infrared (TIR) bands. The essential coefficients of the TFSWA algorithm have been carefully and precisely estimated for the FY-3D MERSI-II TIR thermal bands. A new approach for estimating land surface emissivity has been developed using the ASTER Global Emissivity Database (ASTER GED) and the International Geosphere-Biosphere Program (IGBP) data. A model to estimate the atmospheric water vapor content (AWVC) from the three atmospheric water vapor absorption bands (bands 16, 17, and 18) has been developed as AWVC has been recognized as the most important factor determining the variation of AT. Using MODTRAN 5.2, the equations for the AT estimate from the retrieved AWVC were established. In addition, the AT of the pixels at the far edge of FY-3D MERSI-II data may be strongly affected by the increase of the optical path. Viewing zenith angle (VZA) correction equations were proposed in the study to correct this effect on AT estimation. Field data from four stations were applied to validate the improved TFSWA in the study. Cross-validation with MODIS LST (MYD11) was also conducted to evaluate the improved TFSWA. The cross-validation result indicates that the FY-3D MERSI-II LST from the improved TFSWA are comparable with MODIS LST while the correlation coefficients between FY-3D MERSI-II LST and MODIS LST over the Mid-East China region are in the range of 0.84~0.98 for different seasons and land cover types. Validation with 318 field LST samples indicates that the average MAE and R2 of the scenes at the four stations are about 1.97 K and 0.98, respectively. Thus, it could be concluded that the improved TFSWA developed in the study can be a good algorithm for LST retrieval from FY-3D MERSI-II data with acceptable accuracy." @default.
- W4200533013 created "2021-12-31" @default.
- W4200533013 creator A5000797800 @default.
- W4200533013 creator A5009215196 @default.
- W4200533013 creator A5012782128 @default.
- W4200533013 creator A5031857309 @default.
- W4200533013 creator A5037623842 @default.
- W4200533013 creator A5046810955 @default.
- W4200533013 creator A5067812910 @default.
- W4200533013 date "2021-12-14" @default.
- W4200533013 modified "2023-09-29" @default.
- W4200533013 title "Land Surface Temperature Retrieval from Fengyun-3D Medium Resolution Spectral Imager II (FY-3D MERSI-II) Data with the Improved Two-Factor Split-Window Algorithm" @default.
- W4200533013 cites W1507948144 @default.
- W4200533013 cites W1892481930 @default.
- W4200533013 cites W1964024921 @default.
- W4200533013 cites W1965737830 @default.
- W4200533013 cites W1967157701 @default.
- W4200533013 cites W1967395374 @default.
- W4200533013 cites W1968178976 @default.
- W4200533013 cites W1969256532 @default.
- W4200533013 cites W1986233061 @default.
- W4200533013 cites W1995282508 @default.
- W4200533013 cites W1998457169 @default.
- W4200533013 cites W1999313961 @default.
- W4200533013 cites W2003133188 @default.
- W4200533013 cites W2007519570 @default.
- W4200533013 cites W2008684942 @default.
- W4200533013 cites W2011235526 @default.
- W4200533013 cites W2025089902 @default.
- W4200533013 cites W2025756095 @default.
- W4200533013 cites W2026337749 @default.
- W4200533013 cites W2027705737 @default.
- W4200533013 cites W2041159979 @default.
- W4200533013 cites W2043579401 @default.
- W4200533013 cites W2047415540 @default.
- W4200533013 cites W2050316602 @default.
- W4200533013 cites W2057390839 @default.
- W4200533013 cites W2064359293 @default.
- W4200533013 cites W2065916150 @default.
- W4200533013 cites W2073824559 @default.
- W4200533013 cites W2077629613 @default.
- W4200533013 cites W2078478034 @default.
- W4200533013 cites W2086904917 @default.
- W4200533013 cites W2088928212 @default.
- W4200533013 cites W2091397530 @default.
- W4200533013 cites W2093130172 @default.
- W4200533013 cites W2102003728 @default.
- W4200533013 cites W2103541076 @default.
- W4200533013 cites W2112662635 @default.
- W4200533013 cites W2113771104 @default.
- W4200533013 cites W2115594766 @default.
- W4200533013 cites W2124857288 @default.
- W4200533013 cites W2127437631 @default.
- W4200533013 cites W2139578555 @default.
- W4200533013 cites W2140095899 @default.
- W4200533013 cites W2149910605 @default.
- W4200533013 cites W2155096269 @default.
- W4200533013 cites W2169278316 @default.
- W4200533013 cites W2169447826 @default.
- W4200533013 cites W2171694440 @default.
- W4200533013 cites W2273795329 @default.
- W4200533013 cites W2499818531 @default.
- W4200533013 cites W2534411035 @default.
- W4200533013 cites W2547435995 @default.
- W4200533013 cites W2586586084 @default.
- W4200533013 cites W2607150186 @default.
- W4200533013 cites W2753143537 @default.
- W4200533013 cites W2762409121 @default.
- W4200533013 cites W2765110247 @default.
- W4200533013 cites W2774210648 @default.
- W4200533013 cites W2794268689 @default.
- W4200533013 cites W2795714960 @default.
- W4200533013 cites W2795927428 @default.
- W4200533013 cites W2853745003 @default.
- W4200533013 cites W2918418672 @default.
- W4200533013 cites W2972122774 @default.
- W4200533013 cites W2988320557 @default.
- W4200533013 cites W2994651441 @default.
- W4200533013 cites W3136086559 @default.
- W4200533013 cites W4385534147 @default.
- W4200533013 doi "https://doi.org/10.3390/rs13245072" @default.
- W4200533013 hasPublicationYear "2021" @default.
- W4200533013 type Work @default.
- W4200533013 citedByCount "6" @default.
- W4200533013 countsByYear W42005330132022 @default.
- W4200533013 countsByYear W42005330132023 @default.
- W4200533013 crossrefType "journal-article" @default.
- W4200533013 hasAuthorship W4200533013A5000797800 @default.
- W4200533013 hasAuthorship W4200533013A5009215196 @default.
- W4200533013 hasAuthorship W4200533013A5012782128 @default.
- W4200533013 hasAuthorship W4200533013A5031857309 @default.
- W4200533013 hasAuthorship W4200533013A5037623842 @default.
- W4200533013 hasAuthorship W4200533013A5046810955 @default.
- W4200533013 hasAuthorship W4200533013A5067812910 @default.
- W4200533013 hasBestOaLocation W42005330131 @default.
- W4200533013 hasConcept C120665830 @default.
- W4200533013 hasConcept C121332964 @default.
- W4200533013 hasConcept C127313418 @default.