Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200533030> ?p ?o ?g. }
- W4200533030 abstract "This study aimed to evaluate the performance of the deep convolutional neural network (DCNN) to discriminate between benign, borderline, and malignant serous ovarian tumors (SOTs) on ultrasound(US) images.This retrospective study included 279 pathology-confirmed SOTs US images from 265 patients from March 2013 to December 2016. Two- and three-class classification task based on US images were proposed to classify benign, borderline, and malignant SOTs using a DCNN. The 2-class classification task was divided into two subtasks: benign vs. borderline & malignant (task A), borderline vs. malignant (task B). Five DCNN architectures, namely VGG16, GoogLeNet, ResNet34, MobileNet, and DenseNet, were trained and model performance before and after transfer learning was tested. Model performance was analyzed using accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC).The best overall performance was for the ResNet34 model, which also achieved the better performance after transfer learning. When classifying benign and non-benign tumors, the AUC was 0.96, the sensitivity was 0.91, and the specificity was 0.91. When predicting malignancy and borderline tumors, the AUC was 0.91, the sensitivity was 0.98, and the specificity was 0.74. The model had an overall accuracy of 0.75 for in directly classifying the three categories of benign, malignant and borderline SOTs, and a sensitivity of 0.89 for malignant, which was better than the overall diagnostic accuracy of 0.67 and sensitivity of 0.75 for malignant of the senior ultrasonographer.DCNN model analysis of US images can provide complementary clinical diagnostic information and is thus a promising technique for effective differentiation of benign, borderline, and malignant SOTs." @default.
- W4200533030 created "2021-12-31" @default.
- W4200533030 creator A5000044349 @default.
- W4200533030 creator A5006822602 @default.
- W4200533030 creator A5009691103 @default.
- W4200533030 creator A5015729655 @default.
- W4200533030 creator A5026108994 @default.
- W4200533030 creator A5026964697 @default.
- W4200533030 creator A5046884970 @default.
- W4200533030 creator A5066541219 @default.
- W4200533030 creator A5085152562 @default.
- W4200533030 creator A5088657878 @default.
- W4200533030 creator A5089966579 @default.
- W4200533030 date "2021-12-20" @default.
- W4200533030 modified "2023-10-03" @default.
- W4200533030 title "Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images" @default.
- W4200533030 cites W2014075251 @default.
- W4200533030 cites W2097117768 @default.
- W4200533030 cites W2102150307 @default.
- W4200533030 cites W2108598243 @default.
- W4200533030 cites W2118639745 @default.
- W4200533030 cites W2138202356 @default.
- W4200533030 cites W2151769013 @default.
- W4200533030 cites W2153780770 @default.
- W4200533030 cites W2174661749 @default.
- W4200533030 cites W2194775991 @default.
- W4200533030 cites W2295107390 @default.
- W4200533030 cites W2595698725 @default.
- W4200533030 cites W2763355946 @default.
- W4200533030 cites W2802934060 @default.
- W4200533030 cites W2806788401 @default.
- W4200533030 cites W2806853752 @default.
- W4200533030 cites W2807649309 @default.
- W4200533030 cites W2892004104 @default.
- W4200533030 cites W2896056014 @default.
- W4200533030 cites W2898895571 @default.
- W4200533030 cites W2919115771 @default.
- W4200533030 cites W2940487144 @default.
- W4200533030 cites W2949955266 @default.
- W4200533030 cites W2963446712 @default.
- W4200533030 cites W2995749778 @default.
- W4200533030 cites W3012304831 @default.
- W4200533030 cites W3041133507 @default.
- W4200533030 cites W4210987384 @default.
- W4200533030 doi "https://doi.org/10.3389/fonc.2021.770683" @default.
- W4200533030 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34988015" @default.
- W4200533030 hasPublicationYear "2021" @default.
- W4200533030 type Work @default.
- W4200533030 citedByCount "11" @default.
- W4200533030 countsByYear W42005330302022 @default.
- W4200533030 countsByYear W42005330302023 @default.
- W4200533030 crossrefType "journal-article" @default.
- W4200533030 hasAuthorship W4200533030A5000044349 @default.
- W4200533030 hasAuthorship W4200533030A5006822602 @default.
- W4200533030 hasAuthorship W4200533030A5009691103 @default.
- W4200533030 hasAuthorship W4200533030A5015729655 @default.
- W4200533030 hasAuthorship W4200533030A5026108994 @default.
- W4200533030 hasAuthorship W4200533030A5026964697 @default.
- W4200533030 hasAuthorship W4200533030A5046884970 @default.
- W4200533030 hasAuthorship W4200533030A5066541219 @default.
- W4200533030 hasAuthorship W4200533030A5085152562 @default.
- W4200533030 hasAuthorship W4200533030A5088657878 @default.
- W4200533030 hasAuthorship W4200533030A5089966579 @default.
- W4200533030 hasBestOaLocation W42005330301 @default.
- W4200533030 hasConcept C126322002 @default.
- W4200533030 hasConcept C126838900 @default.
- W4200533030 hasConcept C142724271 @default.
- W4200533030 hasConcept C150173356 @default.
- W4200533030 hasConcept C154945302 @default.
- W4200533030 hasConcept C2779399171 @default.
- W4200533030 hasConcept C41008148 @default.
- W4200533030 hasConcept C58471807 @default.
- W4200533030 hasConcept C71924100 @default.
- W4200533030 hasConcept C81363708 @default.
- W4200533030 hasConceptScore W4200533030C126322002 @default.
- W4200533030 hasConceptScore W4200533030C126838900 @default.
- W4200533030 hasConceptScore W4200533030C142724271 @default.
- W4200533030 hasConceptScore W4200533030C150173356 @default.
- W4200533030 hasConceptScore W4200533030C154945302 @default.
- W4200533030 hasConceptScore W4200533030C2779399171 @default.
- W4200533030 hasConceptScore W4200533030C41008148 @default.
- W4200533030 hasConceptScore W4200533030C58471807 @default.
- W4200533030 hasConceptScore W4200533030C71924100 @default.
- W4200533030 hasConceptScore W4200533030C81363708 @default.
- W4200533030 hasFunder F4320321001 @default.
- W4200533030 hasLocation W42005330301 @default.
- W4200533030 hasLocation W42005330302 @default.
- W4200533030 hasLocation W42005330303 @default.
- W4200533030 hasLocation W42005330304 @default.
- W4200533030 hasOpenAccess W4200533030 @default.
- W4200533030 hasPrimaryLocation W42005330301 @default.
- W4200533030 hasRelatedWork W141524600 @default.
- W4200533030 hasRelatedWork W1841185769 @default.
- W4200533030 hasRelatedWork W2009631346 @default.
- W4200533030 hasRelatedWork W2155138342 @default.
- W4200533030 hasRelatedWork W2155887765 @default.
- W4200533030 hasRelatedWork W2510224130 @default.
- W4200533030 hasRelatedWork W2902148150 @default.
- W4200533030 hasRelatedWork W3047967522 @default.
- W4200533030 hasRelatedWork W4312417841 @default.