Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200535558> ?p ?o ?g. }
- W4200535558 endingPage "106" @default.
- W4200535558 startingPage "106" @default.
- W4200535558 abstract "Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score." @default.
- W4200535558 created "2021-12-31" @default.
- W4200535558 creator A5006430332 @default.
- W4200535558 creator A5042703251 @default.
- W4200535558 creator A5043290463 @default.
- W4200535558 creator A5066781468 @default.
- W4200535558 date "2021-12-27" @default.
- W4200535558 modified "2023-10-06" @default.
- W4200535558 title "Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions" @default.
- W4200535558 cites W1900980687 @default.
- W4200535558 cites W2092072518 @default.
- W4200535558 cites W2101407586 @default.
- W4200535558 cites W2144801789 @default.
- W4200535558 cites W2278098559 @default.
- W4200535558 cites W2335671393 @default.
- W4200535558 cites W2598457882 @default.
- W4200535558 cites W2606731998 @default.
- W4200535558 cites W2735740369 @default.
- W4200535558 cites W2757455114 @default.
- W4200535558 cites W2768955070 @default.
- W4200535558 cites W2769071641 @default.
- W4200535558 cites W2782408838 @default.
- W4200535558 cites W2799553422 @default.
- W4200535558 cites W2806016014 @default.
- W4200535558 cites W2913685370 @default.
- W4200535558 cites W2945708832 @default.
- W4200535558 cites W2976255582 @default.
- W4200535558 cites W2994770446 @default.
- W4200535558 cites W3009621818 @default.
- W4200535558 cites W3011076052 @default.
- W4200535558 cites W3026226589 @default.
- W4200535558 cites W3033645921 @default.
- W4200535558 cites W3040786507 @default.
- W4200535558 cites W3042600082 @default.
- W4200535558 cites W3045754018 @default.
- W4200535558 cites W3045931713 @default.
- W4200535558 cites W3080406710 @default.
- W4200535558 cites W3083292218 @default.
- W4200535558 cites W3087277009 @default.
- W4200535558 cites W3095722810 @default.
- W4200535558 cites W3105421998 @default.
- W4200535558 cites W3111290490 @default.
- W4200535558 cites W3138958118 @default.
- W4200535558 cites W3158773791 @default.
- W4200535558 cites W3166512019 @default.
- W4200535558 cites W3167866269 @default.
- W4200535558 cites W3175064897 @default.
- W4200535558 cites W3177403466 @default.
- W4200535558 cites W3185632505 @default.
- W4200535558 cites W3186051098 @default.
- W4200535558 cites W3189123004 @default.
- W4200535558 cites W3190717048 @default.
- W4200535558 cites W3192289469 @default.
- W4200535558 doi "https://doi.org/10.3390/rs14010106" @default.
- W4200535558 hasPublicationYear "2021" @default.
- W4200535558 type Work @default.
- W4200535558 citedByCount "32" @default.
- W4200535558 countsByYear W42005355582022 @default.
- W4200535558 countsByYear W42005355582023 @default.
- W4200535558 crossrefType "journal-article" @default.
- W4200535558 hasAuthorship W4200535558A5006430332 @default.
- W4200535558 hasAuthorship W4200535558A5042703251 @default.
- W4200535558 hasAuthorship W4200535558A5043290463 @default.
- W4200535558 hasAuthorship W4200535558A5066781468 @default.
- W4200535558 hasBestOaLocation W42005355581 @default.
- W4200535558 hasConcept C108583219 @default.
- W4200535558 hasConcept C115961682 @default.
- W4200535558 hasConcept C121332964 @default.
- W4200535558 hasConcept C127313418 @default.
- W4200535558 hasConcept C153180895 @default.
- W4200535558 hasConcept C153294291 @default.
- W4200535558 hasConcept C154945302 @default.
- W4200535558 hasConcept C204530211 @default.
- W4200535558 hasConcept C31972630 @default.
- W4200535558 hasConcept C41008148 @default.
- W4200535558 hasConcept C50644808 @default.
- W4200535558 hasConcept C62649853 @default.
- W4200535558 hasConcept C81669768 @default.
- W4200535558 hasConcept C82990744 @default.
- W4200535558 hasConcept C99498987 @default.
- W4200535558 hasConceptScore W4200535558C108583219 @default.
- W4200535558 hasConceptScore W4200535558C115961682 @default.
- W4200535558 hasConceptScore W4200535558C121332964 @default.
- W4200535558 hasConceptScore W4200535558C127313418 @default.
- W4200535558 hasConceptScore W4200535558C153180895 @default.
- W4200535558 hasConceptScore W4200535558C153294291 @default.
- W4200535558 hasConceptScore W4200535558C154945302 @default.
- W4200535558 hasConceptScore W4200535558C204530211 @default.
- W4200535558 hasConceptScore W4200535558C31972630 @default.
- W4200535558 hasConceptScore W4200535558C41008148 @default.
- W4200535558 hasConceptScore W4200535558C50644808 @default.
- W4200535558 hasConceptScore W4200535558C62649853 @default.
- W4200535558 hasConceptScore W4200535558C81669768 @default.
- W4200535558 hasConceptScore W4200535558C82990744 @default.
- W4200535558 hasConceptScore W4200535558C99498987 @default.
- W4200535558 hasIssue "1" @default.
- W4200535558 hasLocation W42005355581 @default.
- W4200535558 hasLocation W42005355582 @default.