Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200536856> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4200536856 abstract "Abstract Superelastic shape memory alloys (SMAs) are two‐phase polycrystal materials with hysteretic energy dissipation and deformation recovery capabilities. This feature opens numerous application possibilities, particularly using SMA wires in structural vibration control. However, vibrations, such as wind and earthquake induced, may occur in high rate regimes with alternating amplitudes. Experiments show that the thermodynamically coupled SMA behavior is highly sensitive to strain rate and amplitude. Accordingly, the prediction accuracy of the constitutive models depends notably on their thermodynamic parameters, such as latent heat, heat transfer coefficient and specific heat. The identification of these parameters requires extensive experiments. To circumvent this challenge, this study proposes for SMA wires a machine learning based parameter identification procedure using artificial neural networks (ANNs). In this approach, a recently improved uniaxial macroscopic constitutive SMA model is utilized as a forward physics based model to compute all possible responses in an expected parameter space. With the generated data, a multilayer ANN is trained as a data based inverse model. The Latin hypercube sampling and the backpropagation learning algorithms are applied. After training, the data based model is able to identify suitable thermodynamic parameters from SMA stress responses. With the identified parameters, the constitutive model replicates the strain rate and amplitude dependent SMA response effects. The experimental results are matched by the model with high accuracy." @default.
- W4200536856 created "2021-12-31" @default.
- W4200536856 creator A5005407956 @default.
- W4200536856 creator A5011531352 @default.
- W4200536856 creator A5039296996 @default.
- W4200536856 date "2021-12-01" @default.
- W4200536856 modified "2023-10-16" @default.
- W4200536856 title "Neural Network Parameter Identification Based Constitutive Modeling of Superelastic Shape Memory Alloys" @default.
- W4200536856 cites W1981942761 @default.
- W4200536856 cites W4249517230 @default.
- W4200536856 doi "https://doi.org/10.1002/pamm.202100251" @default.
- W4200536856 hasPublicationYear "2021" @default.
- W4200536856 type Work @default.
- W4200536856 citedByCount "0" @default.
- W4200536856 crossrefType "journal-article" @default.
- W4200536856 hasAuthorship W4200536856A5005407956 @default.
- W4200536856 hasAuthorship W4200536856A5011531352 @default.
- W4200536856 hasAuthorship W4200536856A5039296996 @default.
- W4200536856 hasBestOaLocation W42005368561 @default.
- W4200536856 hasConcept C11413529 @default.
- W4200536856 hasConcept C121332964 @default.
- W4200536856 hasConcept C127413603 @default.
- W4200536856 hasConcept C135402231 @default.
- W4200536856 hasConcept C135628077 @default.
- W4200536856 hasConcept C154945302 @default.
- W4200536856 hasConcept C161921814 @default.
- W4200536856 hasConcept C180205008 @default.
- W4200536856 hasConcept C186060115 @default.
- W4200536856 hasConcept C192562407 @default.
- W4200536856 hasConcept C198394728 @default.
- W4200536856 hasConcept C202973686 @default.
- W4200536856 hasConcept C24890656 @default.
- W4200536856 hasConcept C2775924081 @default.
- W4200536856 hasConcept C41008148 @default.
- W4200536856 hasConcept C47446073 @default.
- W4200536856 hasConcept C49097943 @default.
- W4200536856 hasConcept C50644808 @default.
- W4200536856 hasConcept C57879066 @default.
- W4200536856 hasConcept C62520636 @default.
- W4200536856 hasConcept C66938386 @default.
- W4200536856 hasConcept C86803240 @default.
- W4200536856 hasConcept C97355855 @default.
- W4200536856 hasConceptScore W4200536856C11413529 @default.
- W4200536856 hasConceptScore W4200536856C121332964 @default.
- W4200536856 hasConceptScore W4200536856C127413603 @default.
- W4200536856 hasConceptScore W4200536856C135402231 @default.
- W4200536856 hasConceptScore W4200536856C135628077 @default.
- W4200536856 hasConceptScore W4200536856C154945302 @default.
- W4200536856 hasConceptScore W4200536856C161921814 @default.
- W4200536856 hasConceptScore W4200536856C180205008 @default.
- W4200536856 hasConceptScore W4200536856C186060115 @default.
- W4200536856 hasConceptScore W4200536856C192562407 @default.
- W4200536856 hasConceptScore W4200536856C198394728 @default.
- W4200536856 hasConceptScore W4200536856C202973686 @default.
- W4200536856 hasConceptScore W4200536856C24890656 @default.
- W4200536856 hasConceptScore W4200536856C2775924081 @default.
- W4200536856 hasConceptScore W4200536856C41008148 @default.
- W4200536856 hasConceptScore W4200536856C47446073 @default.
- W4200536856 hasConceptScore W4200536856C49097943 @default.
- W4200536856 hasConceptScore W4200536856C50644808 @default.
- W4200536856 hasConceptScore W4200536856C57879066 @default.
- W4200536856 hasConceptScore W4200536856C62520636 @default.
- W4200536856 hasConceptScore W4200536856C66938386 @default.
- W4200536856 hasConceptScore W4200536856C86803240 @default.
- W4200536856 hasConceptScore W4200536856C97355855 @default.
- W4200536856 hasIssue "1" @default.
- W4200536856 hasLocation W42005368561 @default.
- W4200536856 hasOpenAccess W4200536856 @default.
- W4200536856 hasPrimaryLocation W42005368561 @default.
- W4200536856 hasRelatedWork W2042578903 @default.
- W4200536856 hasRelatedWork W2066243526 @default.
- W4200536856 hasRelatedWork W2079323691 @default.
- W4200536856 hasRelatedWork W2364873584 @default.
- W4200536856 hasRelatedWork W2377501760 @default.
- W4200536856 hasRelatedWork W2386582668 @default.
- W4200536856 hasRelatedWork W2386950333 @default.
- W4200536856 hasRelatedWork W2388177991 @default.
- W4200536856 hasRelatedWork W2916989419 @default.
- W4200536856 hasRelatedWork W2611460547 @default.
- W4200536856 hasVolume "21" @default.
- W4200536856 isParatext "false" @default.
- W4200536856 isRetracted "false" @default.
- W4200536856 workType "article" @default.