Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200537368> ?p ?o ?g. }
- W4200537368 endingPage "598" @default.
- W4200537368 startingPage "587" @default.
- W4200537368 abstract "Background: Decision making for the “best” treatment is particularly challenging in situations in which individual patient response to drugs can largely differ from average treatment effects. By estimating individual treatment effects (ITEs), we aimed to demonstrate how strokes, major bleeding events, and a composite of both could be reduced by model-assisted recommendations for a particular direct oral anticoagulant (DOAC). Methods: In German claims data for the calendar years 2014–2018, we selected 29 901 new users of the DOACs rivaroxaban and apixaban. Random forests considered binary events within 1 y to estimate ITEs under each DOAC according to the X-learner algorithm with 29 potential effect modifiers; treatment recommendations were based on these estimated ITEs. Model performance was evaluated by the c-for-benefit statistics, absolute risk reduction (ARR), and absolute risk difference (ARD) by trial emulation. Results: A significant proportion of patients would be recommended a different treatment option than they actually received. The stroke model significantly discriminated patients for higher benefit and thus indicated improved decisions by reduced outcomes (c-for-benefit: 0.56; 95% confidence interval [0.52; 0.60]). In the group with apixaban recommendation, the model also improved the composite endpoint (ARR: 1.69 % [0.39; 2.97]). In trial emulations, model-assisted recommendations significantly reduced the composite event rate (ARD: −0.78 % [−1.40; −0.03]). Conclusions: If prescribers are undecided about the potential benefits of different treatment options, ITEs can support decision making, especially if evidence is inconclusive, risk-benefit profiles of therapeutic alternatives differ significantly, and the patients’ complexity deviates from “typical” study populations. In the exemplary case for DOACs and potentially in other situations, the significant impact could also become practically relevant if recommendations were available in an automated way as part of decision making. Highlights It was possible to calculate individual treatment effects (ITEs) from routine claims data for rivaroxaban and apixaban, and the characteristics between the groups with recommendation for one or the other option differed significantly. ITEs resulted in recommendations that were significantly superior to usual (observed) treatment allocations in terms of absolute risk reduction, both separately for stroke and in the composite endpoint of stroke and major bleeding. When similar patients from routine data were selected (precision cohorts) for patients with a strong recommendation for one option or the other, those similar patients under the respective recommendation showed a significantly better prognosis compared with the alternative option. Many steps may still be needed on the way to clinical practice, but the principle of decision support developed from routine data may point the way toward future decision-making processes." @default.
- W4200537368 created "2021-12-31" @default.
- W4200537368 creator A5008819108 @default.
- W4200537368 creator A5045947279 @default.
- W4200537368 creator A5074935958 @default.
- W4200537368 creator A5089224585 @default.
- W4200537368 creator A9999999999 @default.
- W4200537368 date "2021-12-15" @default.
- W4200537368 modified "2023-10-03" @default.
- W4200537368 title "Can Machine Learning from Real-World Data Support Drug Treatment Decisions? A Prediction Modeling Case for Direct Oral Anticoagulants" @default.
- W4200537368 cites W1602160603 @default.
- W4200537368 cites W2001299659 @default.
- W4200537368 cites W2002389910 @default.
- W4200537368 cites W2015929254 @default.
- W4200537368 cites W2045030413 @default.
- W4200537368 cites W2061326496 @default.
- W4200537368 cites W2081439943 @default.
- W4200537368 cites W2108456679 @default.
- W4200537368 cites W2152623033 @default.
- W4200537368 cites W2162586165 @default.
- W4200537368 cites W2297389033 @default.
- W4200537368 cites W2404697637 @default.
- W4200537368 cites W2433454023 @default.
- W4200537368 cites W2554140069 @default.
- W4200537368 cites W2587045166 @default.
- W4200537368 cites W2588022915 @default.
- W4200537368 cites W2624816748 @default.
- W4200537368 cites W2727978886 @default.
- W4200537368 cites W2730131373 @default.
- W4200537368 cites W2750856436 @default.
- W4200537368 cites W2761376614 @default.
- W4200537368 cites W2766563193 @default.
- W4200537368 cites W2767884503 @default.
- W4200537368 cites W2807340117 @default.
- W4200537368 cites W2883150385 @default.
- W4200537368 cites W2888989718 @default.
- W4200537368 cites W2892188073 @default.
- W4200537368 cites W2899640924 @default.
- W4200537368 cites W2909002141 @default.
- W4200537368 cites W2909432613 @default.
- W4200537368 cites W2912920304 @default.
- W4200537368 cites W2921504248 @default.
- W4200537368 cites W2924542012 @default.
- W4200537368 cites W2935712808 @default.
- W4200537368 cites W2967770167 @default.
- W4200537368 cites W2984947744 @default.
- W4200537368 cites W3008942987 @default.
- W4200537368 cites W3016002819 @default.
- W4200537368 cites W3016279520 @default.
- W4200537368 cites W3016979691 @default.
- W4200537368 cites W3032434232 @default.
- W4200537368 cites W3034331236 @default.
- W4200537368 cites W3034875569 @default.
- W4200537368 cites W3083654229 @default.
- W4200537368 cites W3088569143 @default.
- W4200537368 cites W3094097136 @default.
- W4200537368 cites W3094334906 @default.
- W4200537368 cites W3096464285 @default.
- W4200537368 cites W3099802519 @default.
- W4200537368 cites W3102027041 @default.
- W4200537368 cites W3131377103 @default.
- W4200537368 cites W3135266906 @default.
- W4200537368 cites W3135745818 @default.
- W4200537368 cites W3204556972 @default.
- W4200537368 cites W4300642177 @default.
- W4200537368 doi "https://doi.org/10.1177/0272989x211064604" @default.
- W4200537368 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34911402" @default.
- W4200537368 hasPublicationYear "2021" @default.
- W4200537368 type Work @default.
- W4200537368 citedByCount "5" @default.
- W4200537368 countsByYear W42005373682022 @default.
- W4200537368 countsByYear W42005373682023 @default.
- W4200537368 crossrefType "journal-article" @default.
- W4200537368 hasAuthorship W4200537368A5008819108 @default.
- W4200537368 hasAuthorship W4200537368A5045947279 @default.
- W4200537368 hasAuthorship W4200537368A5074935958 @default.
- W4200537368 hasAuthorship W4200537368A5089224585 @default.
- W4200537368 hasAuthorship W4200537368A9999999999 @default.
- W4200537368 hasBestOaLocation W42005373682 @default.
- W4200537368 hasConcept C120195587 @default.
- W4200537368 hasConcept C126322002 @default.
- W4200537368 hasConcept C127413603 @default.
- W4200537368 hasConcept C177713679 @default.
- W4200537368 hasConcept C2776301958 @default.
- W4200537368 hasConcept C2778661090 @default.
- W4200537368 hasConcept C2778810321 @default.
- W4200537368 hasConcept C2779161974 @default.
- W4200537368 hasConcept C2780638905 @default.
- W4200537368 hasConcept C2780645631 @default.
- W4200537368 hasConcept C44249647 @default.
- W4200537368 hasConcept C71924100 @default.
- W4200537368 hasConcept C78519656 @default.
- W4200537368 hasConcept C82789193 @default.
- W4200537368 hasConceptScore W4200537368C120195587 @default.
- W4200537368 hasConceptScore W4200537368C126322002 @default.
- W4200537368 hasConceptScore W4200537368C127413603 @default.
- W4200537368 hasConceptScore W4200537368C177713679 @default.
- W4200537368 hasConceptScore W4200537368C2776301958 @default.