Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200538468> ?p ?o ?g. }
- W4200538468 endingPage "5091" @default.
- W4200538468 startingPage "5091" @default.
- W4200538468 abstract "Glacial lake extraction is essential for studying the response of glacial lakes to climate change and assessing the risks of glacial lake outburst floods. Most methods for glacial lake extraction are based on either optical images or synthetic aperture radar (SAR) images. Although deep learning methods can extract features of optical and SAR images well, efficiently fusing two modality features for glacial lake extraction with high accuracy is challenging. In this study, to make full use of the spectral characteristics of optical images and the geometric characteristics of SAR images, we propose an atrous convolution fusion network (ACFNet) to extract glacial lakes based on Landsat 8 optical images and Sentinel-1 SAR images. ACFNet adequately fuses high-level features of optical and SAR data in different receptive fields using atrous convolution. Compared with four fusion models in which data fusion occurs at the input, encoder, decoder, and output stages, two classical semantic segmentation models (SegNet and DeepLabV3+), and a recently proposed model based on U-Net, our model achieves the best results with an intersection-over-union of 0.8278. The experiments show that fully extracting the characteristics of optical and SAR data and appropriately fusing them are vital steps in a network’s performance of glacial lake extraction." @default.
- W4200538468 created "2021-12-31" @default.
- W4200538468 creator A5042379417 @default.
- W4200538468 creator A5053307621 @default.
- W4200538468 creator A5059585968 @default.
- W4200538468 creator A5072519607 @default.
- W4200538468 date "2021-12-15" @default.
- W4200538468 modified "2023-10-18" @default.
- W4200538468 title "ACFNet: A Feature Fusion Network for Glacial Lake Extraction Based on Optical and Synthetic Aperture Radar Images" @default.
- W4200538468 cites W1544860600 @default.
- W4200538468 cites W1961672453 @default.
- W4200538468 cites W1966980409 @default.
- W4200538468 cites W1968408909 @default.
- W4200538468 cites W1982526103 @default.
- W4200538468 cites W2002551747 @default.
- W4200538468 cites W2006919898 @default.
- W4200538468 cites W2022358152 @default.
- W4200538468 cites W2031044308 @default.
- W4200538468 cites W2048329679 @default.
- W4200538468 cites W2066907097 @default.
- W4200538468 cites W2077509829 @default.
- W4200538468 cites W2080455819 @default.
- W4200538468 cites W2086139388 @default.
- W4200538468 cites W2088840575 @default.
- W4200538468 cites W2106902484 @default.
- W4200538468 cites W2166299388 @default.
- W4200538468 cites W2293636166 @default.
- W4200538468 cites W2338698136 @default.
- W4200538468 cites W2412782625 @default.
- W4200538468 cites W2463887756 @default.
- W4200538468 cites W2550521585 @default.
- W4200538468 cites W2559757886 @default.
- W4200538468 cites W2596091235 @default.
- W4200538468 cites W2602962935 @default.
- W4200538468 cites W2622632592 @default.
- W4200538468 cites W2753203118 @default.
- W4200538468 cites W2791343149 @default.
- W4200538468 cites W2793994056 @default.
- W4200538468 cites W2802858619 @default.
- W4200538468 cites W2805006954 @default.
- W4200538468 cites W2810418258 @default.
- W4200538468 cites W2810454813 @default.
- W4200538468 cites W2811393347 @default.
- W4200538468 cites W2886397424 @default.
- W4200538468 cites W2934984619 @default.
- W4200538468 cites W2936322338 @default.
- W4200538468 cites W2940726923 @default.
- W4200538468 cites W2963881378 @default.
- W4200538468 cites W2986975783 @default.
- W4200538468 cites W2989839147 @default.
- W4200538468 cites W2992210793 @default.
- W4200538468 cites W3000094388 @default.
- W4200538468 cites W3001975036 @default.
- W4200538468 cites W3003282372 @default.
- W4200538468 cites W3007314771 @default.
- W4200538468 cites W3012700026 @default.
- W4200538468 cites W3016556611 @default.
- W4200538468 cites W3081544560 @default.
- W4200538468 cites W3087929000 @default.
- W4200538468 cites W3113286765 @default.
- W4200538468 cites W3122416784 @default.
- W4200538468 cites W3138408376 @default.
- W4200538468 cites W3158547991 @default.
- W4200538468 cites W3174162783 @default.
- W4200538468 cites W3192465173 @default.
- W4200538468 cites W3207444164 @default.
- W4200538468 cites W4210727842 @default.
- W4200538468 doi "https://doi.org/10.3390/rs13245091" @default.
- W4200538468 hasPublicationYear "2021" @default.
- W4200538468 type Work @default.
- W4200538468 citedByCount "4" @default.
- W4200538468 countsByYear W42005384682022 @default.
- W4200538468 countsByYear W42005384682023 @default.
- W4200538468 crossrefType "journal-article" @default.
- W4200538468 hasAuthorship W4200538468A5042379417 @default.
- W4200538468 hasAuthorship W4200538468A5053307621 @default.
- W4200538468 hasAuthorship W4200538468A5059585968 @default.
- W4200538468 hasAuthorship W4200538468A5072519607 @default.
- W4200538468 hasBestOaLocation W42005384681 @default.
- W4200538468 hasConcept C114793014 @default.
- W4200538468 hasConcept C127313418 @default.
- W4200538468 hasConcept C138885662 @default.
- W4200538468 hasConcept C153180895 @default.
- W4200538468 hasConcept C154945302 @default.
- W4200538468 hasConcept C15739521 @default.
- W4200538468 hasConcept C158525013 @default.
- W4200538468 hasConcept C2778845824 @default.
- W4200538468 hasConcept C31972630 @default.
- W4200538468 hasConcept C41008148 @default.
- W4200538468 hasConcept C41895202 @default.
- W4200538468 hasConcept C52622490 @default.
- W4200538468 hasConcept C62649853 @default.
- W4200538468 hasConcept C87360688 @default.
- W4200538468 hasConceptScore W4200538468C114793014 @default.
- W4200538468 hasConceptScore W4200538468C127313418 @default.
- W4200538468 hasConceptScore W4200538468C138885662 @default.
- W4200538468 hasConceptScore W4200538468C153180895 @default.
- W4200538468 hasConceptScore W4200538468C154945302 @default.