Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200540022> ?p ?o ?g. }
- W4200540022 endingPage "110553" @default.
- W4200540022 startingPage "110553" @default.
- W4200540022 abstract "Nutrient deficiencies often occur during the growth of pear trees; therefore, rapid, cost-effective monitoring of the nutritional deficiency status of pear leaves is of great value for effective cultivation management. The nitrogen, phosphorus and potassium contents of nutrient-deficient pear leaf samples were analysed with a handheld miniature near-infrared (NIR) spectrometer operating at a reflectance spectrum of 900–1700 nm. Combined with different pre-treatment and feature extraction methods, 42 recognition models were established by random forest (RF), support vector machine (SVM), gradient boosting decision tree (GBDT) and extreme gradient boosting (XGBoost). Finally, the best accuracy and F1-score of the SVM with the testing dataset, with standard normal variate (SNV) pre-processing and genetic algorithm (GA) feature extraction, were 82.06% and 80.25%, respectively. The proposed method using a miniature NIR spectrometer can quickly predict the nutrient deficiency status of pear leaves during the cultivation period." @default.
- W4200540022 created "2021-12-31" @default.
- W4200540022 creator A5003835661 @default.
- W4200540022 creator A5023848989 @default.
- W4200540022 creator A5043142532 @default.
- W4200540022 creator A5050632045 @default.
- W4200540022 creator A5058709700 @default.
- W4200540022 creator A5063481044 @default.
- W4200540022 creator A5071991982 @default.
- W4200540022 creator A5073715160 @default.
- W4200540022 date "2022-01-01" @default.
- W4200540022 modified "2023-10-16" @default.
- W4200540022 title "Predicting the nutrition deficiency of fresh pear leaves with a miniature near-infrared spectrometer in the laboratory" @default.
- W4200540022 cites W1677796994 @default.
- W4200540022 cites W1877350092 @default.
- W4200540022 cites W1973087775 @default.
- W4200540022 cites W1997270149 @default.
- W4200540022 cites W2001179019 @default.
- W4200540022 cites W2019144955 @default.
- W4200540022 cites W2021754455 @default.
- W4200540022 cites W2026104389 @default.
- W4200540022 cites W2045125597 @default.
- W4200540022 cites W2051011878 @default.
- W4200540022 cites W2055702453 @default.
- W4200540022 cites W2071188448 @default.
- W4200540022 cites W2081552889 @default.
- W4200540022 cites W2087926907 @default.
- W4200540022 cites W2099287967 @default.
- W4200540022 cites W2110565288 @default.
- W4200540022 cites W2136963235 @default.
- W4200540022 cites W2142894633 @default.
- W4200540022 cites W2162317211 @default.
- W4200540022 cites W2167615431 @default.
- W4200540022 cites W2168020168 @default.
- W4200540022 cites W2180062180 @default.
- W4200540022 cites W2273708466 @default.
- W4200540022 cites W2294798173 @default.
- W4200540022 cites W2338691990 @default.
- W4200540022 cites W2475271133 @default.
- W4200540022 cites W2561843522 @default.
- W4200540022 cites W2591729793 @default.
- W4200540022 cites W2620923275 @default.
- W4200540022 cites W2735856004 @default.
- W4200540022 cites W2743327777 @default.
- W4200540022 cites W2759780133 @default.
- W4200540022 cites W2795877001 @default.
- W4200540022 cites W2800669351 @default.
- W4200540022 cites W2903347456 @default.
- W4200540022 cites W2922680508 @default.
- W4200540022 cites W2997150204 @default.
- W4200540022 cites W3015529742 @default.
- W4200540022 cites W3021072200 @default.
- W4200540022 cites W3026322137 @default.
- W4200540022 cites W3035880404 @default.
- W4200540022 cites W3040882327 @default.
- W4200540022 cites W3044159285 @default.
- W4200540022 cites W3045655675 @default.
- W4200540022 cites W3085390443 @default.
- W4200540022 cites W3093755439 @default.
- W4200540022 cites W3093935958 @default.
- W4200540022 cites W3104035342 @default.
- W4200540022 cites W3112383915 @default.
- W4200540022 cites W3146257408 @default.
- W4200540022 cites W3164741413 @default.
- W4200540022 cites W3192310 @default.
- W4200540022 cites W4239510810 @default.
- W4200540022 cites W4249015746 @default.
- W4200540022 doi "https://doi.org/10.1016/j.measurement.2021.110553" @default.
- W4200540022 hasPublicationYear "2022" @default.
- W4200540022 type Work @default.
- W4200540022 citedByCount "12" @default.
- W4200540022 countsByYear W42005400222022 @default.
- W4200540022 countsByYear W42005400222023 @default.
- W4200540022 crossrefType "journal-article" @default.
- W4200540022 hasAuthorship W4200540022A5003835661 @default.
- W4200540022 hasAuthorship W4200540022A5023848989 @default.
- W4200540022 hasAuthorship W4200540022A5043142532 @default.
- W4200540022 hasAuthorship W4200540022A5050632045 @default.
- W4200540022 hasAuthorship W4200540022A5058709700 @default.
- W4200540022 hasAuthorship W4200540022A5063481044 @default.
- W4200540022 hasAuthorship W4200540022A5071991982 @default.
- W4200540022 hasAuthorship W4200540022A5073715160 @default.
- W4200540022 hasConcept C120665830 @default.
- W4200540022 hasConcept C121332964 @default.
- W4200540022 hasConcept C12267149 @default.
- W4200540022 hasConcept C142796444 @default.
- W4200540022 hasConcept C144027150 @default.
- W4200540022 hasConcept C154945302 @default.
- W4200540022 hasConcept C18903297 @default.
- W4200540022 hasConcept C205649164 @default.
- W4200540022 hasConcept C2775874295 @default.
- W4200540022 hasConcept C33390570 @default.
- W4200540022 hasConcept C41008148 @default.
- W4200540022 hasConcept C46686674 @default.
- W4200540022 hasConcept C62649853 @default.
- W4200540022 hasConcept C86803240 @default.
- W4200540022 hasConceptScore W4200540022C120665830 @default.
- W4200540022 hasConceptScore W4200540022C121332964 @default.