Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200540936> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4200540936 endingPage "3587" @default.
- W4200540936 startingPage "3571" @default.
- W4200540936 abstract "Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process of growth target points is optimized. Secondly, the process of selecting the parent node is optimized and a Dubins curve is used to constraint it. Then, the expansion process from tree node to random point is optimized by the gravitational repulsion field method and dynamic step method. In the obstacle detection process, Dubins curve constraint is used, and the bidirectional RRT* algorithm is adopted to speed up the iteration of the algorithm. After that, the obtained paths are smoothed by using the greedy algorithm and cubic B-spline interpolation. In addition, to verify the superiority and correctness of the algorithm, an unmanned mining vehicle kinematic model in the form of front-wheel steering is developed based on the Ackermann steering principle and simulated for CoppeliaSim. In the simulation, the Stanley algorithm is used for path tracking and Reeds-Shepp curve to adjust the final parking attitude of the truck. Finally, the experimental comparison shows that the improved bidirectional RRT* algorithm performs well in the simulation experiment, and outperforms the common RRT* algorithm in various aspects." @default.
- W4200540936 created "2021-12-31" @default.
- W4200540936 creator A5027564334 @default.
- W4200540936 creator A5046454314 @default.
- W4200540936 creator A5057213664 @default.
- W4200540936 creator A5074820600 @default.
- W4200540936 date "2022-01-01" @default.
- W4200540936 modified "2023-10-18" @default.
- W4200540936 title "Path Planning Based on the Improved RRT* Algorithm for the Mining Truck" @default.
- W4200540936 cites W1971998222 @default.
- W4200540936 cites W2046456604 @default.
- W4200540936 cites W2078505369 @default.
- W4200540936 cites W2086860466 @default.
- W4200540936 cites W2787245337 @default.
- W4200540936 cites W2891447548 @default.
- W4200540936 cites W2901884405 @default.
- W4200540936 cites W2947931875 @default.
- W4200540936 cites W3002939557 @default.
- W4200540936 cites W3034808441 @default.
- W4200540936 cites W3080880247 @default.
- W4200540936 cites W3107417205 @default.
- W4200540936 doi "https://doi.org/10.32604/cmc.2022.022183" @default.
- W4200540936 hasPublicationYear "2022" @default.
- W4200540936 type Work @default.
- W4200540936 citedByCount "1" @default.
- W4200540936 countsByYear W42005409362022 @default.
- W4200540936 crossrefType "journal-article" @default.
- W4200540936 hasAuthorship W4200540936A5027564334 @default.
- W4200540936 hasAuthorship W4200540936A5046454314 @default.
- W4200540936 hasAuthorship W4200540936A5057213664 @default.
- W4200540936 hasAuthorship W4200540936A5074820600 @default.
- W4200540936 hasBestOaLocation W42005409361 @default.
- W4200540936 hasConcept C111919701 @default.
- W4200540936 hasConcept C11413529 @default.
- W4200540936 hasConcept C126255220 @default.
- W4200540936 hasConcept C154945302 @default.
- W4200540936 hasConcept C199360897 @default.
- W4200540936 hasConcept C2776839635 @default.
- W4200540936 hasConcept C2777735758 @default.
- W4200540936 hasConcept C33923547 @default.
- W4200540936 hasConcept C41008148 @default.
- W4200540936 hasConcept C81074085 @default.
- W4200540936 hasConcept C90509273 @default.
- W4200540936 hasConcept C98045186 @default.
- W4200540936 hasConceptScore W4200540936C111919701 @default.
- W4200540936 hasConceptScore W4200540936C11413529 @default.
- W4200540936 hasConceptScore W4200540936C126255220 @default.
- W4200540936 hasConceptScore W4200540936C154945302 @default.
- W4200540936 hasConceptScore W4200540936C199360897 @default.
- W4200540936 hasConceptScore W4200540936C2776839635 @default.
- W4200540936 hasConceptScore W4200540936C2777735758 @default.
- W4200540936 hasConceptScore W4200540936C33923547 @default.
- W4200540936 hasConceptScore W4200540936C41008148 @default.
- W4200540936 hasConceptScore W4200540936C81074085 @default.
- W4200540936 hasConceptScore W4200540936C90509273 @default.
- W4200540936 hasConceptScore W4200540936C98045186 @default.
- W4200540936 hasIssue "2" @default.
- W4200540936 hasLocation W42005409361 @default.
- W4200540936 hasOpenAccess W4200540936 @default.
- W4200540936 hasPrimaryLocation W42005409361 @default.
- W4200540936 hasRelatedWork W1660309994 @default.
- W4200540936 hasRelatedWork W1991478428 @default.
- W4200540936 hasRelatedWork W2369723851 @default.
- W4200540936 hasRelatedWork W2371294653 @default.
- W4200540936 hasRelatedWork W2564325388 @default.
- W4200540936 hasRelatedWork W2947481239 @default.
- W4200540936 hasRelatedWork W3112714807 @default.
- W4200540936 hasRelatedWork W3134878008 @default.
- W4200540936 hasRelatedWork W3195318120 @default.
- W4200540936 hasRelatedWork W3204444418 @default.
- W4200540936 hasVolume "71" @default.
- W4200540936 isParatext "false" @default.
- W4200540936 isRetracted "false" @default.
- W4200540936 workType "article" @default.