Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200542802> ?p ?o ?g. }
- W4200542802 abstract "Abstract The linear discriminant analysis (LDA) is a common technique used in machine learning and pattern recognition for dimensionality reduction problems. Here, the LDA is applied to detect faults‐scarps in high‐resolution bathymetric profiles in the Southern Pescadero Basin (SPB) in the Gulf of California. The LDA uses fault scarps and cuestas (sloping topography) identified by a geomorphologist in the neighboring Alarcón Rise (AR). These geometric representations are transformed into a parametric space by an idealized fault‐scarp degradation model. Through inversion, we extracted the product of the mass diffusion coefficient with time ( τ ), scarp height ( u 0 ), and goodness of fit of the model on the scarp profiles and cuestas ( ε ). The LDA transforms the parametric space τ , u 0 , ε by the Fisher’s criterion into a 1D dimensional space that maximizes separability of classes. Then, the classification is performed by Bayes decision rule using the probability density functions (PDF) built from the 1D projected data for each class (fault‐scarps and cuestas). The implementation results in cross‐sectional profiles across the SPB show the ability to detect faults in the deepest part of the basin where the flat basin floor is interrupted by morphologically young fault‐scarp arrays. The LDA interpretation outperforms manual identification, particularly in faults scarps that are longer than ∼3 km, whereas shorter faults are challenging to discern from other linear features like channels. The model can extract information about the state of degradation of the scarps. This application allows the identification of fault generation episodes and resolves kinematic interactions between faults." @default.
- W4200542802 created "2021-12-31" @default.
- W4200542802 creator A5001926887 @default.
- W4200542802 creator A5022408247 @default.
- W4200542802 creator A5028816460 @default.
- W4200542802 creator A5048086325 @default.
- W4200542802 creator A5057130274 @default.
- W4200542802 creator A5066075127 @default.
- W4200542802 creator A5069216372 @default.
- W4200542802 creator A5080603765 @default.
- W4200542802 creator A5087453409 @default.
- W4200542802 date "2021-12-01" @default.
- W4200542802 modified "2023-09-26" @default.
- W4200542802 title "A New Method for Fault‐Scarp Detection Using Linear Discriminant Analysis in High‐Resolution Bathymetry Data From the Alarcón Rise and Pescadero Basin" @default.
- W4200542802 cites W1584205738 @default.
- W4200542802 cites W1603478598 @default.
- W4200542802 cites W1633891106 @default.
- W4200542802 cites W1760020758 @default.
- W4200542802 cites W1964929357 @default.
- W4200542802 cites W1966932071 @default.
- W4200542802 cites W1970866761 @default.
- W4200542802 cites W1972294502 @default.
- W4200542802 cites W1973641340 @default.
- W4200542802 cites W1977840933 @default.
- W4200542802 cites W1980965079 @default.
- W4200542802 cites W1985455292 @default.
- W4200542802 cites W1988341576 @default.
- W4200542802 cites W1991362481 @default.
- W4200542802 cites W1996863764 @default.
- W4200542802 cites W1997235146 @default.
- W4200542802 cites W2002363674 @default.
- W4200542802 cites W2005763377 @default.
- W4200542802 cites W2009605083 @default.
- W4200542802 cites W2012754316 @default.
- W4200542802 cites W2013066204 @default.
- W4200542802 cites W2016086956 @default.
- W4200542802 cites W2024543196 @default.
- W4200542802 cites W2026007707 @default.
- W4200542802 cites W2034705058 @default.
- W4200542802 cites W2039373433 @default.
- W4200542802 cites W2040335052 @default.
- W4200542802 cites W2044672931 @default.
- W4200542802 cites W2046954417 @default.
- W4200542802 cites W2051220980 @default.
- W4200542802 cites W2057887698 @default.
- W4200542802 cites W2058460811 @default.
- W4200542802 cites W2070108311 @default.
- W4200542802 cites W2074458343 @default.
- W4200542802 cites W2076373896 @default.
- W4200542802 cites W2076697530 @default.
- W4200542802 cites W2077992884 @default.
- W4200542802 cites W2081569041 @default.
- W4200542802 cites W2084140752 @default.
- W4200542802 cites W2088171225 @default.
- W4200542802 cites W2095905764 @default.
- W4200542802 cites W2098839042 @default.
- W4200542802 cites W2099796761 @default.
- W4200542802 cites W2107726111 @default.
- W4200542802 cites W2115165418 @default.
- W4200542802 cites W2118276046 @default.
- W4200542802 cites W2119416244 @default.
- W4200542802 cites W2120225054 @default.
- W4200542802 cites W2138819160 @default.
- W4200542802 cites W2144594884 @default.
- W4200542802 cites W2154095899 @default.
- W4200542802 cites W2171304149 @default.
- W4200542802 cites W2172810813 @default.
- W4200542802 cites W2327563283 @default.
- W4200542802 cites W2403114968 @default.
- W4200542802 cites W2480475164 @default.
- W4200542802 cites W2606854918 @default.
- W4200542802 cites W2609205501 @default.
- W4200542802 cites W2611159092 @default.
- W4200542802 cites W2790100303 @default.
- W4200542802 cites W2803048603 @default.
- W4200542802 cites W2899643682 @default.
- W4200542802 cites W2900838089 @default.
- W4200542802 cites W2948477805 @default.
- W4200542802 cites W2954330110 @default.
- W4200542802 cites W2980450960 @default.
- W4200542802 cites W2982350982 @default.
- W4200542802 cites W3002159567 @default.
- W4200542802 cites W3102163329 @default.
- W4200542802 cites W3137390764 @default.
- W4200542802 cites W4212863985 @default.
- W4200542802 cites W4255859060 @default.
- W4200542802 doi "https://doi.org/10.1029/2021tc006925" @default.
- W4200542802 hasPublicationYear "2021" @default.
- W4200542802 type Work @default.
- W4200542802 citedByCount "2" @default.
- W4200542802 countsByYear W42005428022022 @default.
- W4200542802 countsByYear W42005428022023 @default.
- W4200542802 crossrefType "journal-article" @default.
- W4200542802 hasAuthorship W4200542802A5001926887 @default.
- W4200542802 hasAuthorship W4200542802A5022408247 @default.
- W4200542802 hasAuthorship W4200542802A5028816460 @default.
- W4200542802 hasAuthorship W4200542802A5048086325 @default.
- W4200542802 hasAuthorship W4200542802A5057130274 @default.
- W4200542802 hasAuthorship W4200542802A5066075127 @default.
- W4200542802 hasAuthorship W4200542802A5069216372 @default.