Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200544503> ?p ?o ?g. }
- W4200544503 endingPage "101528" @default.
- W4200544503 startingPage "101528" @default.
- W4200544503 abstract "A Scheimpflug lidar system, based on the Scheimpflug arrangement has recently been developed and has demonstrated its ability to detect, identify, differentiate, and monitor aerial insect activity in real time and in situ. Despite the performance of such as system, making forecasts remains a challenge. The abundance of aerial insects and their distribution are determined by meteorological factors and seasonality. Based on Scheimpflug lidar data and local meteorological parameters, this study aimed to predict the abundance of airborne insects. Abundance is recorded for both dry and rainy seasons for two days, from 8 am to 9 pm. Local meteorological parameters are also recorded. The exploratory analysis of the meteorological data is carried out using principal component analysis (PCA). Statistical modeling of flying insect activity is carried out using principal, partial least square and ridge regression models. This modeling has shown that the abundance of airborne insects depended largely on the weather conditions and give relevant forecasting of airborne insects to help fighting against vector-borne diseases and to control insect-pests in crops." @default.
- W4200544503 created "2021-12-31" @default.
- W4200544503 creator A5047623412 @default.
- W4200544503 creator A5049255136 @default.
- W4200544503 creator A5071529647 @default.
- W4200544503 creator A5071542203 @default.
- W4200544503 date "2022-05-01" @default.
- W4200544503 modified "2023-10-02" @default.
- W4200544503 title "Predictive model for airborne insect abundance intercepted by a continuous wave Scheimpflug lidar in relation to meteorological parameters" @default.
- W4200544503 cites W1854406203 @default.
- W4200544503 cites W1973554321 @default.
- W4200544503 cites W1973856747 @default.
- W4200544503 cites W1976178575 @default.
- W4200544503 cites W1986186138 @default.
- W4200544503 cites W1987611268 @default.
- W4200544503 cites W2003586390 @default.
- W4200544503 cites W2015982462 @default.
- W4200544503 cites W2036465413 @default.
- W4200544503 cites W2044111401 @default.
- W4200544503 cites W2044213883 @default.
- W4200544503 cites W2053617094 @default.
- W4200544503 cites W2070298872 @default.
- W4200544503 cites W2072202361 @default.
- W4200544503 cites W2073503722 @default.
- W4200544503 cites W2078678510 @default.
- W4200544503 cites W2081141132 @default.
- W4200544503 cites W2083978430 @default.
- W4200544503 cites W2094048915 @default.
- W4200544503 cites W2109181374 @default.
- W4200544503 cites W2125290673 @default.
- W4200544503 cites W2126830953 @default.
- W4200544503 cites W2134220996 @default.
- W4200544503 cites W2154899872 @default.
- W4200544503 cites W2157806977 @default.
- W4200544503 cites W2168452669 @default.
- W4200544503 cites W2174157052 @default.
- W4200544503 cites W2179729651 @default.
- W4200544503 cites W2203023521 @default.
- W4200544503 cites W2309435744 @default.
- W4200544503 cites W2317262923 @default.
- W4200544503 cites W2464660870 @default.
- W4200544503 cites W2565114801 @default.
- W4200544503 cites W2619890661 @default.
- W4200544503 cites W2735160008 @default.
- W4200544503 cites W2766177463 @default.
- W4200544503 cites W2788418760 @default.
- W4200544503 cites W2791561409 @default.
- W4200544503 cites W2795820591 @default.
- W4200544503 cites W2895868491 @default.
- W4200544503 cites W2982575320 @default.
- W4200544503 cites W2989919946 @default.
- W4200544503 cites W3024452997 @default.
- W4200544503 cites W3037596685 @default.
- W4200544503 cites W3124108956 @default.
- W4200544503 cites W4234698323 @default.
- W4200544503 doi "https://doi.org/10.1016/j.ecoinf.2021.101528" @default.
- W4200544503 hasPublicationYear "2022" @default.
- W4200544503 type Work @default.
- W4200544503 citedByCount "1" @default.
- W4200544503 countsByYear W42005445032023 @default.
- W4200544503 crossrefType "journal-article" @default.
- W4200544503 hasAuthorship W4200544503A5047623412 @default.
- W4200544503 hasAuthorship W4200544503A5049255136 @default.
- W4200544503 hasAuthorship W4200544503A5071529647 @default.
- W4200544503 hasAuthorship W4200544503A5071542203 @default.
- W4200544503 hasConcept C105795698 @default.
- W4200544503 hasConcept C125403950 @default.
- W4200544503 hasConcept C153294291 @default.
- W4200544503 hasConcept C169363364 @default.
- W4200544503 hasConcept C169760540 @default.
- W4200544503 hasConcept C18903297 @default.
- W4200544503 hasConcept C205649164 @default.
- W4200544503 hasConcept C27438332 @default.
- W4200544503 hasConcept C2776882836 @default.
- W4200544503 hasConcept C33923547 @default.
- W4200544503 hasConcept C39432304 @default.
- W4200544503 hasConcept C51399673 @default.
- W4200544503 hasConcept C62649853 @default.
- W4200544503 hasConcept C77077793 @default.
- W4200544503 hasConcept C86803240 @default.
- W4200544503 hasConceptScore W4200544503C105795698 @default.
- W4200544503 hasConceptScore W4200544503C125403950 @default.
- W4200544503 hasConceptScore W4200544503C153294291 @default.
- W4200544503 hasConceptScore W4200544503C169363364 @default.
- W4200544503 hasConceptScore W4200544503C169760540 @default.
- W4200544503 hasConceptScore W4200544503C18903297 @default.
- W4200544503 hasConceptScore W4200544503C205649164 @default.
- W4200544503 hasConceptScore W4200544503C27438332 @default.
- W4200544503 hasConceptScore W4200544503C2776882836 @default.
- W4200544503 hasConceptScore W4200544503C33923547 @default.
- W4200544503 hasConceptScore W4200544503C39432304 @default.
- W4200544503 hasConceptScore W4200544503C51399673 @default.
- W4200544503 hasConceptScore W4200544503C62649853 @default.
- W4200544503 hasConceptScore W4200544503C77077793 @default.
- W4200544503 hasConceptScore W4200544503C86803240 @default.
- W4200544503 hasFunder F4320307875 @default.
- W4200544503 hasFunder F4320322581 @default.
- W4200544503 hasFunder F4320324119 @default.