Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200548650> ?p ?o ?g. }
- W4200548650 endingPage "108775" @default.
- W4200548650 startingPage "108775" @default.
- W4200548650 abstract "The application of energy balance models for estimation of evapotranspiration (ET) still has challenges to be addressed for large scale applications. The algorithm for automated calibration using inverse modeling at extreme conditions (CIMEC) is based on the definition of endmembers that represent the extreme conditions of the ET spectrum, between hot (dry and sparse vegetation) and cold (wet and dense vegetation) surfaces, with pre-defined quantiles for the endmember selection. The main goal was to assess geeSEBAL algorithm uncertainties related to the (i) automated calibration, including the use of additional filters (land cover, homogeneity, and domain area) and (ii) the use of a global climate grid as input data. Based on a sensitivity analysis, we defined new set of quantiles to increase the accuracy of ET estimates in subtropical humid climates, since the default quantiles were adjusted to semiarid climates with dry summers. To validate our ET estimates we used eddy covariance measurements from five flux towers located in the South of Brazil. Processing 132 Landsat cloud free images and using adjusted quantiles, we found a root mean square error (RMSE) of 0.91 mm d − 1 and a coefficient of determination (R²) of 0.82 with geeSEBAL driven by meteorological measurements. Using the pre-defined quantiles, we found an RMSE of 1.16 mm d − 1 (27% higher) and R² of 0.75. The upscaling instantaneous ET to daily ET resulted in an underestimation of the daily ET using the pre-defined quantiles, while the optimized quantiles corrected the daily estimates. Furthermore, our results suggested a low sensitivity of geeSEBAL to meteorological inputs, since RMSE slightly increased to 1.04 mm d − 1 (14.3% higher) and R² decreased to 0.76 (8.5% smaller) when driven by global climate data. For data scarce areas, geeSEBAL is a feasible alternative for cropland ET estimation and water resources management in subtropical humid climates." @default.
- W4200548650 created "2021-12-31" @default.
- W4200548650 creator A5009665769 @default.
- W4200548650 creator A5014341124 @default.
- W4200548650 creator A5019034289 @default.
- W4200548650 creator A5036282632 @default.
- W4200548650 creator A5042366871 @default.
- W4200548650 creator A5056078720 @default.
- W4200548650 creator A5056353807 @default.
- W4200548650 creator A5068515425 @default.
- W4200548650 creator A5090817289 @default.
- W4200548650 date "2022-03-01" @default.
- W4200548650 modified "2023-10-01" @default.
- W4200548650 title "Assessing geeSEBAL automated calibration and meteorological reanalysis uncertainties to estimate evapotranspiration in subtropical humid climates" @default.
- W4200548650 cites W1462939428 @default.
- W4200548650 cites W180836830 @default.
- W4200548650 cites W1913521411 @default.
- W4200548650 cites W1970390440 @default.
- W4200548650 cites W1971580664 @default.
- W4200548650 cites W1972046296 @default.
- W4200548650 cites W1975768883 @default.
- W4200548650 cites W1977741125 @default.
- W4200548650 cites W1980320347 @default.
- W4200548650 cites W2001448422 @default.
- W4200548650 cites W2007477667 @default.
- W4200548650 cites W2011996101 @default.
- W4200548650 cites W2014767505 @default.
- W4200548650 cites W2018318189 @default.
- W4200548650 cites W2026640495 @default.
- W4200548650 cites W2027354047 @default.
- W4200548650 cites W2030610270 @default.
- W4200548650 cites W2031441528 @default.
- W4200548650 cites W2035750701 @default.
- W4200548650 cites W2036091850 @default.
- W4200548650 cites W2040693669 @default.
- W4200548650 cites W2041570083 @default.
- W4200548650 cites W2050320438 @default.
- W4200548650 cites W2058888805 @default.
- W4200548650 cites W2059205508 @default.
- W4200548650 cites W2061003790 @default.
- W4200548650 cites W2061346772 @default.
- W4200548650 cites W2074082212 @default.
- W4200548650 cites W2080661250 @default.
- W4200548650 cites W2087325533 @default.
- W4200548650 cites W2090635069 @default.
- W4200548650 cites W2094160229 @default.
- W4200548650 cites W2099663213 @default.
- W4200548650 cites W2110551389 @default.
- W4200548650 cites W2112693746 @default.
- W4200548650 cites W2116183433 @default.
- W4200548650 cites W2119130463 @default.
- W4200548650 cites W2119132330 @default.
- W4200548650 cites W2119895530 @default.
- W4200548650 cites W2135685863 @default.
- W4200548650 cites W2139709933 @default.
- W4200548650 cites W2163606831 @default.
- W4200548650 cites W2175386348 @default.
- W4200548650 cites W2196961118 @default.
- W4200548650 cites W2233818796 @default.
- W4200548650 cites W2292173921 @default.
- W4200548650 cites W2295859130 @default.
- W4200548650 cites W2485420366 @default.
- W4200548650 cites W2506970706 @default.
- W4200548650 cites W2517674203 @default.
- W4200548650 cites W2588450090 @default.
- W4200548650 cites W2597508410 @default.
- W4200548650 cites W2605847660 @default.
- W4200548650 cites W2613781739 @default.
- W4200548650 cites W2615892279 @default.
- W4200548650 cites W2725897987 @default.
- W4200548650 cites W2732141345 @default.
- W4200548650 cites W2797558667 @default.
- W4200548650 cites W2887176132 @default.
- W4200548650 cites W2890547350 @default.
- W4200548650 cites W2898413476 @default.
- W4200548650 cites W2904321320 @default.
- W4200548650 cites W2907203129 @default.
- W4200548650 cites W2907360806 @default.
- W4200548650 cites W2970578364 @default.
- W4200548650 cites W2971742813 @default.
- W4200548650 cites W3014558300 @default.
- W4200548650 cites W3021978690 @default.
- W4200548650 cites W3080319602 @default.
- W4200548650 cites W3122632967 @default.
- W4200548650 cites W3129728509 @default.
- W4200548650 cites W3174254304 @default.
- W4200548650 cites W3187239567 @default.
- W4200548650 cites W792049901 @default.
- W4200548650 cites W7953740 @default.
- W4200548650 doi "https://doi.org/10.1016/j.agrformet.2021.108775" @default.
- W4200548650 hasPublicationYear "2022" @default.
- W4200548650 type Work @default.
- W4200548650 citedByCount "7" @default.
- W4200548650 countsByYear W42005486502022 @default.
- W4200548650 countsByYear W42005486502023 @default.
- W4200548650 crossrefType "journal-article" @default.
- W4200548650 hasAuthorship W4200548650A5009665769 @default.
- W4200548650 hasAuthorship W4200548650A5014341124 @default.