Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200549495> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4200549495 endingPage "8583" @default.
- W4200549495 startingPage "8583" @default.
- W4200549495 abstract "Well-logging is an important formation characterization and resource evaluation method in oil and gas exploration and development. However, there has been a shortage of well-logging data because Well-logging can only be measured by expensive and time-consuming field tests. In this study, we aimed to find effective machine learning techniques for well-logging data prediction, considering the temporal and spatial characteristics of well-logging data. To achieve this goal, the convolutional neural network (CNN) and the long short-term memory (LSTM) neural networks were combined to extract the spatial and temporal features of well-logging data, and the particle swarm optimization (PSO) algorithm was used to determine hyperparameters of the optimal CNN-LSTM architecture to predict logging curves in this study. We applied the proposed CNN-LSTM-PSO model, along with support vector regression, gradient-boosting regression, CNN-PSO, and LSTM-PSO models, to forecast photoelectric effect (PE) logs from other logs of the target well, and from logs of adjacent wells. Among the applied algorithms, the proposed CNN-LSTM-PSO model generated the best prediction of PE logs because it fully considers the spatio-temporal information of other well-logging curves. The prediction accuracy of the PE log using logs of the adjacent wells was not as good as that using the other well-logging data of the target well itself, due to geological uncertainties between the target well and adjacent wells. The results also show that the prediction accuracy of the models can be significantly improved with the PSO algorithm. The proposed CNN-LSTM-PSO model was found to enable reliable and efficient Well-logging prediction for existing and new drilled wells; further, as the reservoir complexity increases, the proxy model should be able to reduce the optimization time dramatically." @default.
- W4200549495 created "2021-12-31" @default.
- W4200549495 creator A5012324275 @default.
- W4200549495 creator A5020589304 @default.
- W4200549495 creator A5029944480 @default.
- W4200549495 creator A5040962053 @default.
- W4200549495 creator A5078397516 @default.
- W4200549495 date "2021-12-20" @default.
- W4200549495 modified "2023-09-28" @default.
- W4200549495 title "Well-Logging Prediction Based on Hybrid Neural Network Model" @default.
- W4200549495 cites W1503744145 @default.
- W4200549495 cites W1600744878 @default.
- W4200549495 cites W1617495083 @default.
- W4200549495 cites W1820051232 @default.
- W4200549495 cites W2039240409 @default.
- W4200549495 cites W2064675550 @default.
- W4200549495 cites W2100495367 @default.
- W4200549495 cites W2147800946 @default.
- W4200549495 cites W2152195021 @default.
- W4200549495 cites W2343348914 @default.
- W4200549495 cites W2412094331 @default.
- W4200549495 cites W2543580944 @default.
- W4200549495 cites W2565739165 @default.
- W4200549495 cites W2573137292 @default.
- W4200549495 cites W2783937107 @default.
- W4200549495 cites W2883318912 @default.
- W4200549495 cites W2919115771 @default.
- W4200549495 cites W2922367262 @default.
- W4200549495 cites W2962949934 @default.
- W4200549495 cites W2963446712 @default.
- W4200549495 cites W3011523529 @default.
- W4200549495 cites W3019190937 @default.
- W4200549495 cites W3166793137 @default.
- W4200549495 doi "https://doi.org/10.3390/en14248583" @default.
- W4200549495 hasPublicationYear "2021" @default.
- W4200549495 type Work @default.
- W4200549495 citedByCount "10" @default.
- W4200549495 countsByYear W42005494952022 @default.
- W4200549495 countsByYear W42005494952023 @default.
- W4200549495 crossrefType "journal-article" @default.
- W4200549495 hasAuthorship W4200549495A5012324275 @default.
- W4200549495 hasAuthorship W4200549495A5020589304 @default.
- W4200549495 hasAuthorship W4200549495A5029944480 @default.
- W4200549495 hasAuthorship W4200549495A5040962053 @default.
- W4200549495 hasAuthorship W4200549495A5078397516 @default.
- W4200549495 hasBestOaLocation W42005494951 @default.
- W4200549495 hasConcept C119857082 @default.
- W4200549495 hasConcept C12267149 @default.
- W4200549495 hasConcept C124101348 @default.
- W4200549495 hasConcept C125620115 @default.
- W4200549495 hasConcept C127413603 @default.
- W4200549495 hasConcept C153180895 @default.
- W4200549495 hasConcept C154945302 @default.
- W4200549495 hasConcept C18903297 @default.
- W4200549495 hasConcept C35817400 @default.
- W4200549495 hasConcept C41008148 @default.
- W4200549495 hasConcept C50644808 @default.
- W4200549495 hasConcept C78762247 @default.
- W4200549495 hasConcept C81363708 @default.
- W4200549495 hasConcept C85617194 @default.
- W4200549495 hasConcept C8642999 @default.
- W4200549495 hasConcept C86803240 @default.
- W4200549495 hasConceptScore W4200549495C119857082 @default.
- W4200549495 hasConceptScore W4200549495C12267149 @default.
- W4200549495 hasConceptScore W4200549495C124101348 @default.
- W4200549495 hasConceptScore W4200549495C125620115 @default.
- W4200549495 hasConceptScore W4200549495C127413603 @default.
- W4200549495 hasConceptScore W4200549495C153180895 @default.
- W4200549495 hasConceptScore W4200549495C154945302 @default.
- W4200549495 hasConceptScore W4200549495C18903297 @default.
- W4200549495 hasConceptScore W4200549495C35817400 @default.
- W4200549495 hasConceptScore W4200549495C41008148 @default.
- W4200549495 hasConceptScore W4200549495C50644808 @default.
- W4200549495 hasConceptScore W4200549495C78762247 @default.
- W4200549495 hasConceptScore W4200549495C81363708 @default.
- W4200549495 hasConceptScore W4200549495C85617194 @default.
- W4200549495 hasConceptScore W4200549495C8642999 @default.
- W4200549495 hasConceptScore W4200549495C86803240 @default.
- W4200549495 hasIssue "24" @default.
- W4200549495 hasLocation W42005494951 @default.
- W4200549495 hasLocation W42005494952 @default.
- W4200549495 hasOpenAccess W4200549495 @default.
- W4200549495 hasPrimaryLocation W42005494951 @default.
- W4200549495 hasRelatedWork W2041399278 @default.
- W4200549495 hasRelatedWork W2136184105 @default.
- W4200549495 hasRelatedWork W2996933976 @default.
- W4200549495 hasRelatedWork W3013515612 @default.
- W4200549495 hasRelatedWork W3208266890 @default.
- W4200549495 hasRelatedWork W4210794429 @default.
- W4200549495 hasRelatedWork W4295309597 @default.
- W4200549495 hasRelatedWork W4377700356 @default.
- W4200549495 hasRelatedWork W2187500075 @default.
- W4200549495 hasRelatedWork W2345184372 @default.
- W4200549495 hasVolume "14" @default.
- W4200549495 isParatext "false" @default.
- W4200549495 isRetracted "false" @default.
- W4200549495 workType "article" @default.