Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200553652> ?p ?o ?g. }
- W4200553652 endingPage "101536" @default.
- W4200553652 startingPage "101536" @default.
- W4200553652 abstract "Direction of Arrival (DOA) estimation by Maximum Likelihood (ML) method has been popular among researchers due to its effective performance. However, its practical applications are limited by its computational complexity in non-linear multidimensional solution search which requires optimization. In order to make accurate non-linear ML-DOA estimation, simultaneously reducing the computational complexity involved in the process evolutionary algorithms are employed in this manuscript. In this manuscript, a recently reported nature-inspired optimization algorithm termed as ‘sailfish optimizer’ has been applied for non-linear multidimensional DOA estimation. The sailfish optimization is based on the swarming behavior of a group of sailfish to catch the prey which are sardines. The algorithm has been designed with both random and chaotic sequence-based population initialization. Simulation studies reveal that the chaotic sequence-based algorithm has lower computational time and accurate DOA estimation compared to its random counterpart. A parallel implementation of the chaotic version of the algorithm has been carried out to reduce the computational aspect of the algorithm. Simulation studies reveal the parallel version has almost 50% lower run time than that of the sequential one for 2048 snapshots implementations. By varying the number of sources, sensors, and snapshots experimentation has been carried out which reveals accurate DOA estimation (more than 95% angle accuracy in most of the cases) with reduced computational time (due to parallel implementation) achieved with the proposed algorithm. The comparative analysis of the proposed algorithm has been carried out with that achieved by benchmark MUSIC (Multiple Signal Classification) algorithm and nature inspired algorithms like : Advanced Particle Swarm Optimization, Real Coded Genetic Algorithm, Differential Evolution, CLONAL Selection, and Artificial Bee Colony algorithm. Kruskal–Wallis non-parametric test is performed under various noise conditions to validate the superior performance of the proposed approach over the comparative algorithms." @default.
- W4200553652 created "2021-12-31" @default.
- W4200553652 creator A5001748232 @default.
- W4200553652 creator A5018632142 @default.
- W4200553652 creator A5066199155 @default.
- W4200553652 date "2022-04-01" @default.
- W4200553652 modified "2023-10-03" @default.
- W4200553652 title "A parallel chaotic sailfish optimization algorithm for estimation of DOA in wireless sensor array" @default.
- W4200553652 cites W1595159159 @default.
- W4200553652 cites W1920764768 @default.
- W4200553652 cites W1972657627 @default.
- W4200553652 cites W1983865796 @default.
- W4200553652 cites W2003581526 @default.
- W4200553652 cites W2006841864 @default.
- W4200553652 cites W2021904477 @default.
- W4200553652 cites W2028373980 @default.
- W4200553652 cites W2048267917 @default.
- W4200553652 cites W2055555176 @default.
- W4200553652 cites W2066218102 @default.
- W4200553652 cites W2068811136 @default.
- W4200553652 cites W2082555634 @default.
- W4200553652 cites W2096166399 @default.
- W4200553652 cites W2113638573 @default.
- W4200553652 cites W2125141403 @default.
- W4200553652 cites W2128131274 @default.
- W4200553652 cites W2158374184 @default.
- W4200553652 cites W2188506490 @default.
- W4200553652 cites W2515097620 @default.
- W4200553652 cites W2625582857 @default.
- W4200553652 cites W2742835528 @default.
- W4200553652 cites W2801687921 @default.
- W4200553652 cites W2892897885 @default.
- W4200553652 cites W2900486219 @default.
- W4200553652 cites W2905147046 @default.
- W4200553652 cites W2914717758 @default.
- W4200553652 cites W2969684095 @default.
- W4200553652 cites W2982596266 @default.
- W4200553652 cites W2984098774 @default.
- W4200553652 cites W3003845456 @default.
- W4200553652 cites W3023596779 @default.
- W4200553652 cites W3048822174 @default.
- W4200553652 cites W3081439660 @default.
- W4200553652 cites W3096271441 @default.
- W4200553652 cites W3100938305 @default.
- W4200553652 cites W4230298713 @default.
- W4200553652 cites W563912764 @default.
- W4200553652 doi "https://doi.org/10.1016/j.phycom.2021.101536" @default.
- W4200553652 hasPublicationYear "2022" @default.
- W4200553652 type Work @default.
- W4200553652 citedByCount "8" @default.
- W4200553652 countsByYear W42005536522022 @default.
- W4200553652 countsByYear W42005536522023 @default.
- W4200553652 crossrefType "journal-article" @default.
- W4200553652 hasAuthorship W4200553652A5001748232 @default.
- W4200553652 hasAuthorship W4200553652A5018632142 @default.
- W4200553652 hasAuthorship W4200553652A5066199155 @default.
- W4200553652 hasConcept C11413529 @default.
- W4200553652 hasConcept C114466953 @default.
- W4200553652 hasConcept C126255220 @default.
- W4200553652 hasConcept C13280743 @default.
- W4200553652 hasConcept C154945302 @default.
- W4200553652 hasConcept C172051844 @default.
- W4200553652 hasConcept C179799912 @default.
- W4200553652 hasConcept C185798385 @default.
- W4200553652 hasConcept C199360897 @default.
- W4200553652 hasConcept C205649164 @default.
- W4200553652 hasConcept C21822782 @default.
- W4200553652 hasConcept C2777052490 @default.
- W4200553652 hasConcept C33923547 @default.
- W4200553652 hasConcept C41008148 @default.
- W4200553652 hasConcept C76155785 @default.
- W4200553652 hasConceptScore W4200553652C11413529 @default.
- W4200553652 hasConceptScore W4200553652C114466953 @default.
- W4200553652 hasConceptScore W4200553652C126255220 @default.
- W4200553652 hasConceptScore W4200553652C13280743 @default.
- W4200553652 hasConceptScore W4200553652C154945302 @default.
- W4200553652 hasConceptScore W4200553652C172051844 @default.
- W4200553652 hasConceptScore W4200553652C179799912 @default.
- W4200553652 hasConceptScore W4200553652C185798385 @default.
- W4200553652 hasConceptScore W4200553652C199360897 @default.
- W4200553652 hasConceptScore W4200553652C205649164 @default.
- W4200553652 hasConceptScore W4200553652C21822782 @default.
- W4200553652 hasConceptScore W4200553652C2777052490 @default.
- W4200553652 hasConceptScore W4200553652C33923547 @default.
- W4200553652 hasConceptScore W4200553652C41008148 @default.
- W4200553652 hasConceptScore W4200553652C76155785 @default.
- W4200553652 hasLocation W42005536521 @default.
- W4200553652 hasOpenAccess W4200553652 @default.
- W4200553652 hasPrimaryLocation W42005536521 @default.
- W4200553652 hasRelatedWork W1983440794 @default.
- W4200553652 hasRelatedWork W2126450275 @default.
- W4200553652 hasRelatedWork W2372955329 @default.
- W4200553652 hasRelatedWork W2531392548 @default.
- W4200553652 hasRelatedWork W2563952234 @default.
- W4200553652 hasRelatedWork W2574560900 @default.
- W4200553652 hasRelatedWork W3005106827 @default.
- W4200553652 hasRelatedWork W4309156034 @default.
- W4200553652 hasRelatedWork W1931937217 @default.