Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200567508> ?p ?o ?g. }
- W4200567508 endingPage "2364" @default.
- W4200567508 startingPage "2364" @default.
- W4200567508 abstract "The probability of the basic HHO algorithm in choosing different search methods is symmetric: about 0.5 in the interval from 0 to 1. The optimal solution from the previous iteration of the algorithm affects the current solution, the search for prey in a linear way led to a single search result, and the overall number of updates of the optimal position was low. These factors limit Harris Hawks optimization algorithm. For example, an ease of falling into a local optimum and the efficiency of convergence is low. Inspired by the prey hunting behavior of Harris’s hawk, a multi-strategy search Harris Hawks optimization algorithm is proposed, and the least squares support vector machine (LSSVM) optimized by the proposed algorithm was used to model the reactive power output of the synchronous condenser. Firstly, we select the best Gauss chaotic mapping method from seven commonly used chaotic mapping population initialization methods to improve the accuracy. Secondly, the optimal neighborhood perturbation mechanism is introduced to avoid premature maturity of the algorithm. Simultaneously, the adaptive weight and variable spiral search strategy are designed to simulate the prey hunting behavior of Harris hawk to improve the convergence speed of the improved algorithm and enhance the global search ability of the improved algorithm. A numerical experiment is tested with the classical 23 test functions and the CEC2017 test function set. The results show that the proposed algorithm outperforms the Harris Hawks optimization algorithm and other intelligent optimization algorithms in terms of convergence speed, solution accuracy and robustness, and the model of synchronous condenser reactive power output established by the improved algorithm optimized LSSVM has good accuracy and generalization ability." @default.
- W4200567508 created "2021-12-31" @default.
- W4200567508 creator A5001041424 @default.
- W4200567508 creator A5045441407 @default.
- W4200567508 creator A5080655703 @default.
- W4200567508 creator A5083262932 @default.
- W4200567508 creator A5086547011 @default.
- W4200567508 date "2021-12-08" @default.
- W4200567508 modified "2023-10-16" @default.
- W4200567508 title "Harris Hawks Optimization with Multi-Strategy Search and Application" @default.
- W4200567508 cites W1193242870 @default.
- W4200567508 cites W1595159159 @default.
- W4200567508 cites W1596717185 @default.
- W4200567508 cites W1605458923 @default.
- W4200567508 cites W1849730171 @default.
- W4200567508 cites W1964529706 @default.
- W4200567508 cites W1983774268 @default.
- W4200567508 cites W1990952381 @default.
- W4200567508 cites W1997600725 @default.
- W4200567508 cites W2001422417 @default.
- W4200567508 cites W2003961265 @default.
- W4200567508 cites W2024060531 @default.
- W4200567508 cites W2029998585 @default.
- W4200567508 cites W2039595530 @default.
- W4200567508 cites W2057814586 @default.
- W4200567508 cites W2063136261 @default.
- W4200567508 cites W2065401134 @default.
- W4200567508 cites W2067200690 @default.
- W4200567508 cites W2082754320 @default.
- W4200567508 cites W2085722120 @default.
- W4200567508 cites W2133085392 @default.
- W4200567508 cites W2151554678 @default.
- W4200567508 cites W2154943049 @default.
- W4200567508 cites W2159019497 @default.
- W4200567508 cites W2165466912 @default.
- W4200567508 cites W2168081761 @default.
- W4200567508 cites W2169064301 @default.
- W4200567508 cites W2172270145 @default.
- W4200567508 cites W2172909134 @default.
- W4200567508 cites W2183843206 @default.
- W4200567508 cites W2191258242 @default.
- W4200567508 cites W2224971544 @default.
- W4200567508 cites W2232317135 @default.
- W4200567508 cites W2232748179 @default.
- W4200567508 cites W2290883490 @default.
- W4200567508 cites W2346457778 @default.
- W4200567508 cites W2505889273 @default.
- W4200567508 cites W2507510427 @default.
- W4200567508 cites W2507944451 @default.
- W4200567508 cites W2520618604 @default.
- W4200567508 cites W2530660889 @default.
- W4200567508 cites W2582636227 @default.
- W4200567508 cites W2603605794 @default.
- W4200567508 cites W2605359652 @default.
- W4200567508 cites W2613771876 @default.
- W4200567508 cites W2763907376 @default.
- W4200567508 cites W2768434535 @default.
- W4200567508 cites W2793026107 @default.
- W4200567508 cites W2805172798 @default.
- W4200567508 cites W2888602283 @default.
- W4200567508 cites W2889386826 @default.
- W4200567508 cites W2892277620 @default.
- W4200567508 cites W2898037265 @default.
- W4200567508 cites W2901565938 @default.
- W4200567508 cites W2919979744 @default.
- W4200567508 cites W2936118929 @default.
- W4200567508 cites W2962182762 @default.
- W4200567508 cites W2964247400 @default.
- W4200567508 cites W2989363164 @default.
- W4200567508 cites W3007878073 @default.
- W4200567508 cites W3014647989 @default.
- W4200567508 cites W3043338943 @default.
- W4200567508 cites W3046805690 @default.
- W4200567508 cites W3048762391 @default.
- W4200567508 cites W3087509239 @default.
- W4200567508 cites W3092431010 @default.
- W4200567508 cites W3092664572 @default.
- W4200567508 cites W3100008504 @default.
- W4200567508 cites W3118996869 @default.
- W4200567508 cites W3127206013 @default.
- W4200567508 cites W3128772914 @default.
- W4200567508 cites W3134042711 @default.
- W4200567508 cites W3139198113 @default.
- W4200567508 cites W3143860458 @default.
- W4200567508 cites W3153962087 @default.
- W4200567508 cites W3154623308 @default.
- W4200567508 cites W3187712750 @default.
- W4200567508 cites W3205192055 @default.
- W4200567508 cites W4214543178 @default.
- W4200567508 cites W4246598646 @default.
- W4200567508 cites W4250503569 @default.
- W4200567508 doi "https://doi.org/10.3390/sym13122364" @default.
- W4200567508 hasPublicationYear "2021" @default.
- W4200567508 type Work @default.
- W4200567508 citedByCount "6" @default.
- W4200567508 countsByYear W42005675082022 @default.
- W4200567508 countsByYear W42005675082023 @default.
- W4200567508 crossrefType "journal-article" @default.