Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200567870> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4200567870 endingPage "103541" @default.
- W4200567870 startingPage "103541" @default.
- W4200567870 abstract "• A novel method to measure drivers’ visual environment using Google Street View panoramas. • Deep learning algorithms was used for semantic segmentation and depth estimation of images. • Transformation of the coordinate system was conducted to build environment in the real world. • Explainable machine learning methods was used to predict speeding crashes and identify effects. This study aims to explore the effects of drivers’ visual environment on speeding crashes by using different machine learning techniques. To obtain the data of drivers’ visual environment in the real world, a framework was proposed to obtain the Google street view (GSV) images. Deep neural network and computer vision technologies were applied to obtain the clustering and depth information from the GSV images. To reflect drivers’ visual environment in the real world, the coordinate transformation was conducted, and several visual measures were proposed and calculated. Three different tree-based ensemble models (i.e., random forest, adaptive boosting (AdaBoost), and eXtreme Gradient Boosting (XGBoost)) were applied to estimate the number of speeding crashes and the comparison results showed that XGBoost could provide the best data fit. The explainable machine learning method were applied to explore the effects of drivers’ visual environment and other features on speeding crashes. The results validated the visual environment data obtained by the proposed method for the speeding crash analysis. It was suggested that the proportion of trees in the drivers’ view and the proportion of road length with trees could reduce speeding crashes. In addition, the complexity level of drivers’ visual environment was found to increase the crash occurrence. This study provided new insights to obtain the detailed information from GSV images for traffic safety analysis. The findings based on the explainable machine learning could also provide road planners and engineers clear suggestions to select appropriate countermeasures to enhance traffic safety." @default.
- W4200567870 created "2021-12-31" @default.
- W4200567870 creator A5040847417 @default.
- W4200567870 creator A5050998044 @default.
- W4200567870 creator A5077857328 @default.
- W4200567870 creator A5086271475 @default.
- W4200567870 date "2022-02-01" @default.
- W4200567870 modified "2023-10-18" @default.
- W4200567870 title "Applying machine learning and google street view to explore effects of drivers’ visual environment on traffic safety" @default.
- W4200567870 cites W1965254048 @default.
- W4200567870 cites W1988790447 @default.
- W4200567870 cites W2020097247 @default.
- W4200567870 cites W2033178020 @default.
- W4200567870 cites W2068035155 @default.
- W4200567870 cites W2068241800 @default.
- W4200567870 cites W2070493638 @default.
- W4200567870 cites W2076647894 @default.
- W4200567870 cites W2085349079 @default.
- W4200567870 cites W2132947399 @default.
- W4200567870 cites W2255287620 @default.
- W4200567870 cites W2342568042 @default.
- W4200567870 cites W2469496323 @default.
- W4200567870 cites W2532629823 @default.
- W4200567870 cites W2588172417 @default.
- W4200567870 cites W2600413428 @default.
- W4200567870 cites W2608182163 @default.
- W4200567870 cites W2750632489 @default.
- W4200567870 cites W2790145002 @default.
- W4200567870 cites W2790696552 @default.
- W4200567870 cites W2794191739 @default.
- W4200567870 cites W2804528990 @default.
- W4200567870 cites W2890307266 @default.
- W4200567870 cites W2903963188 @default.
- W4200567870 cites W2906929575 @default.
- W4200567870 cites W2909834961 @default.
- W4200567870 cites W2911964244 @default.
- W4200567870 cites W2943891375 @default.
- W4200567870 cites W2956052144 @default.
- W4200567870 cites W2958547995 @default.
- W4200567870 cites W2963048283 @default.
- W4200567870 cites W2963150697 @default.
- W4200567870 cites W2964327206 @default.
- W4200567870 cites W2966092918 @default.
- W4200567870 cites W2988224741 @default.
- W4200567870 cites W2996705655 @default.
- W4200567870 cites W3035530851 @default.
- W4200567870 cites W3039973105 @default.
- W4200567870 cites W3167447372 @default.
- W4200567870 cites W631895740 @default.
- W4200567870 doi "https://doi.org/10.1016/j.trc.2021.103541" @default.
- W4200567870 hasPublicationYear "2022" @default.
- W4200567870 type Work @default.
- W4200567870 citedByCount "12" @default.
- W4200567870 countsByYear W42005678702022 @default.
- W4200567870 countsByYear W42005678702023 @default.
- W4200567870 crossrefType "journal-article" @default.
- W4200567870 hasAuthorship W4200567870A5040847417 @default.
- W4200567870 hasAuthorship W4200567870A5050998044 @default.
- W4200567870 hasAuthorship W4200567870A5077857328 @default.
- W4200567870 hasAuthorship W4200567870A5086271475 @default.
- W4200567870 hasConcept C127413603 @default.
- W4200567870 hasConcept C22212356 @default.
- W4200567870 hasConcept C38652104 @default.
- W4200567870 hasConcept C41008148 @default.
- W4200567870 hasConceptScore W4200567870C127413603 @default.
- W4200567870 hasConceptScore W4200567870C22212356 @default.
- W4200567870 hasConceptScore W4200567870C38652104 @default.
- W4200567870 hasConceptScore W4200567870C41008148 @default.
- W4200567870 hasLocation W42005678701 @default.
- W4200567870 hasOpenAccess W4200567870 @default.
- W4200567870 hasPrimaryLocation W42005678701 @default.
- W4200567870 hasRelatedWork W1596801655 @default.
- W4200567870 hasRelatedWork W2130043461 @default.
- W4200567870 hasRelatedWork W2350741829 @default.
- W4200567870 hasRelatedWork W2358668433 @default.
- W4200567870 hasRelatedWork W2376932109 @default.
- W4200567870 hasRelatedWork W2382290278 @default.
- W4200567870 hasRelatedWork W2390279801 @default.
- W4200567870 hasRelatedWork W2748952813 @default.
- W4200567870 hasRelatedWork W2899084033 @default.
- W4200567870 hasRelatedWork W2530322880 @default.
- W4200567870 hasVolume "135" @default.
- W4200567870 isParatext "false" @default.
- W4200567870 isRetracted "false" @default.
- W4200567870 workType "article" @default.