Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200569232> ?p ?o ?g. }
- W4200569232 endingPage "3629" @default.
- W4200569232 startingPage "3629" @default.
- W4200569232 abstract "Water quality estimation tools based on real-time monitoring are essential for the effective management of organic pollution in watersheds. This study aims to monitor changes in the levels of chemical oxygen demand (COD, CODMn) and dissolved organic matter (DOM) in Erhai Lake Basin, exploring their relationships and the ability of DOM to estimate COD and CODMn. Excitation emission matrix–parallel factor analysis (EEM–PARAFAC) of DOM identified protein-like component (C1) and humic-like components (C2, C3, C4). Combined with random forest (RF), maximum fluorescence intensity (Fmax) values of components were selected as estimation parameters to establish models. Results proved that the COD of rivers was more sensitive to the reduction in C1 and C2, while CODMn was more sensitive to C4. The DOM of Erhai Lake thrived by internal sources, and the relationship between COD, CODMn, and DOM of Erhai Lake was more complicated than rivers (inflow rivers of Erhai Lake). Models for rivers achieved good estimations, and by adding dissolved oxygen and water temperature, the estimation ability of COD models for Erhai Lake was significantly improved. This study demonstrates that DOM-based machine learning can be used as an alternative tool for real-time monitoring of organic pollution and deepening the understanding of the relationship between COD, CODMn, and DOM, and provide a scientific basis for water quality management." @default.
- W4200569232 created "2021-12-31" @default.
- W4200569232 creator A5016729221 @default.
- W4200569232 creator A5021260264 @default.
- W4200569232 creator A5024418678 @default.
- W4200569232 creator A5028061861 @default.
- W4200569232 creator A5032353804 @default.
- W4200569232 creator A5047628650 @default.
- W4200569232 creator A5064117303 @default.
- W4200569232 creator A5066290364 @default.
- W4200569232 creator A5074299793 @default.
- W4200569232 date "2021-12-16" @default.
- W4200569232 modified "2023-10-16" @default.
- W4200569232 title "The Estimation of Chemical Oxygen Demand of Erhai Lake Basin and Its Links with DOM Fluorescent Components Using Machine Learning" @default.
- W4200569232 cites W1489463871 @default.
- W4200569232 cites W1494192115 @default.
- W4200569232 cites W1520812622 @default.
- W4200569232 cites W1599627005 @default.
- W4200569232 cites W1979427751 @default.
- W4200569232 cites W1985372952 @default.
- W4200569232 cites W1990004397 @default.
- W4200569232 cites W1990653740 @default.
- W4200569232 cites W1993711084 @default.
- W4200569232 cites W1998025025 @default.
- W4200569232 cites W1998053851 @default.
- W4200569232 cites W2000274990 @default.
- W4200569232 cites W2000634266 @default.
- W4200569232 cites W2002792406 @default.
- W4200569232 cites W2003332760 @default.
- W4200569232 cites W2005144679 @default.
- W4200569232 cites W2006342326 @default.
- W4200569232 cites W2006556936 @default.
- W4200569232 cites W2009552296 @default.
- W4200569232 cites W2025939314 @default.
- W4200569232 cites W2036383833 @default.
- W4200569232 cites W2040620251 @default.
- W4200569232 cites W2061830556 @default.
- W4200569232 cites W2070209698 @default.
- W4200569232 cites W2074604114 @default.
- W4200569232 cites W2116782162 @default.
- W4200569232 cites W2116948197 @default.
- W4200569232 cites W2120321951 @default.
- W4200569232 cites W2135323745 @default.
- W4200569232 cites W2140006621 @default.
- W4200569232 cites W2143481518 @default.
- W4200569232 cites W2151663063 @default.
- W4200569232 cites W2157382843 @default.
- W4200569232 cites W2160599013 @default.
- W4200569232 cites W2162889508 @default.
- W4200569232 cites W2216946510 @default.
- W4200569232 cites W2218047931 @default.
- W4200569232 cites W2321058186 @default.
- W4200569232 cites W2331659570 @default.
- W4200569232 cites W2344731622 @default.
- W4200569232 cites W2529869467 @default.
- W4200569232 cites W2566744277 @default.
- W4200569232 cites W2621878620 @default.
- W4200569232 cites W2788166803 @default.
- W4200569232 cites W2891166038 @default.
- W4200569232 cites W2911964244 @default.
- W4200569232 cites W2919167042 @default.
- W4200569232 cites W2943160824 @default.
- W4200569232 cites W2962926413 @default.
- W4200569232 cites W2969862654 @default.
- W4200569232 cites W2997051686 @default.
- W4200569232 cites W3011010726 @default.
- W4200569232 cites W3033590175 @default.
- W4200569232 cites W3036590128 @default.
- W4200569232 cites W3038221054 @default.
- W4200569232 cites W3113101293 @default.
- W4200569232 cites W3119427625 @default.
- W4200569232 cites W3138522254 @default.
- W4200569232 cites W3202748344 @default.
- W4200569232 doi "https://doi.org/10.3390/w13243629" @default.
- W4200569232 hasPublicationYear "2021" @default.
- W4200569232 type Work @default.
- W4200569232 citedByCount "3" @default.
- W4200569232 countsByYear W42005692322022 @default.
- W4200569232 countsByYear W42005692322023 @default.
- W4200569232 crossrefType "journal-article" @default.
- W4200569232 hasAuthorship W4200569232A5016729221 @default.
- W4200569232 hasAuthorship W4200569232A5021260264 @default.
- W4200569232 hasAuthorship W4200569232A5024418678 @default.
- W4200569232 hasAuthorship W4200569232A5028061861 @default.
- W4200569232 hasAuthorship W4200569232A5032353804 @default.
- W4200569232 hasAuthorship W4200569232A5047628650 @default.
- W4200569232 hasAuthorship W4200569232A5064117303 @default.
- W4200569232 hasAuthorship W4200569232A5066290364 @default.
- W4200569232 hasAuthorship W4200569232A5074299793 @default.
- W4200569232 hasBestOaLocation W42005692321 @default.
- W4200569232 hasConcept C107872376 @default.
- W4200569232 hasConcept C114993203 @default.
- W4200569232 hasConcept C126645576 @default.
- W4200569232 hasConcept C127313418 @default.
- W4200569232 hasConcept C173051318 @default.
- W4200569232 hasConcept C185592680 @default.
- W4200569232 hasConcept C187320778 @default.
- W4200569232 hasConcept C188287460 @default.