Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200569724> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4200569724 endingPage "436" @default.
- W4200569724 startingPage "419" @default.
- W4200569724 abstract "Abstract The purpose of this study is to display the neutronic simulation of nanofluid application to reactor core. The variations of VVER-1000 nuclear reactor primary neutronic parameters are investigated by using different volume fraction of nanofluid as coolant. The effect of using nanofluid as coolant on reactor dynamical parameters which play an important role in the dynamical analysis of the reactor and safety core is calculated. In this paper coolant and fuel temperature reactivity coefficients in a VVER-1000 nuclear reactor with nanofluid as a coolant are calculated by using various volume fractions and different sizes of TiO 2 (Titania) nanoparticle. For do this, firstly the equivalent cell of the hexagonal fuel rod and the surrounding coolant nanofluid is simulated. Then the thermal hydraulic calculations are performed at different volume fractions and sizes of the nanoparticle. Then, using WIMS and CITATION codes, the reactor core is simulated and the effect of coolant and fuel temperature changes on the effective multiplication factor is calculated. For doing optimization, an artificial neural network is trained in MATLAB using the observed data. The different sizes and various volume fractions are inputs, fuel and coolant temperature reactivity coefficients are outputs. The optimal size and volume fraction is determined using the neural network by implementing the genetic algorithms. In the optimization, volume fraction of 7% and size 77 nm are optimal values." @default.
- W4200569724 created "2021-12-31" @default.
- W4200569724 creator A5001017135 @default.
- W4200569724 creator A5078543809 @default.
- W4200569724 date "2021-12-01" @default.
- W4200569724 modified "2023-10-16" @default.
- W4200569724 title "Optimization of the TiO2 nanofluid as a coolant in the VVER-1000 nuclear reactor based on the thermal reactivity feedback coefficients via the genetic algorithm" @default.
- W4200569724 cites W1207658802 @default.
- W4200569724 cites W1974014039 @default.
- W4200569724 cites W1975303677 @default.
- W4200569724 cites W1985877704 @default.
- W4200569724 cites W2002728487 @default.
- W4200569724 cites W2002948299 @default.
- W4200569724 cites W2018345083 @default.
- W4200569724 cites W2031305068 @default.
- W4200569724 cites W2036174612 @default.
- W4200569724 cites W2044592377 @default.
- W4200569724 cites W2078757954 @default.
- W4200569724 cites W2170354095 @default.
- W4200569724 cites W2254666404 @default.
- W4200569724 cites W28366997 @default.
- W4200569724 cites W2957328225 @default.
- W4200569724 cites W3043262814 @default.
- W4200569724 doi "https://doi.org/10.1515/kern-2021-0010" @default.
- W4200569724 hasPublicationYear "2021" @default.
- W4200569724 type Work @default.
- W4200569724 citedByCount "0" @default.
- W4200569724 crossrefType "journal-article" @default.
- W4200569724 hasAuthorship W4200569724A5001017135 @default.
- W4200569724 hasAuthorship W4200569724A5078543809 @default.
- W4200569724 hasConcept C116915560 @default.
- W4200569724 hasConcept C121332964 @default.
- W4200569724 hasConcept C127413603 @default.
- W4200569724 hasConcept C155672457 @default.
- W4200569724 hasConcept C159985019 @default.
- W4200569724 hasConcept C171250308 @default.
- W4200569724 hasConcept C192562407 @default.
- W4200569724 hasConcept C20556612 @default.
- W4200569724 hasConcept C21946209 @default.
- W4200569724 hasConcept C2777769504 @default.
- W4200569724 hasConcept C2780406361 @default.
- W4200569724 hasConcept C37750225 @default.
- W4200569724 hasConcept C541523362 @default.
- W4200569724 hasConcept C65590680 @default.
- W4200569724 hasConcept C7083945 @default.
- W4200569724 hasConcept C91914117 @default.
- W4200569724 hasConcept C97355855 @default.
- W4200569724 hasConceptScore W4200569724C116915560 @default.
- W4200569724 hasConceptScore W4200569724C121332964 @default.
- W4200569724 hasConceptScore W4200569724C127413603 @default.
- W4200569724 hasConceptScore W4200569724C155672457 @default.
- W4200569724 hasConceptScore W4200569724C159985019 @default.
- W4200569724 hasConceptScore W4200569724C171250308 @default.
- W4200569724 hasConceptScore W4200569724C192562407 @default.
- W4200569724 hasConceptScore W4200569724C20556612 @default.
- W4200569724 hasConceptScore W4200569724C21946209 @default.
- W4200569724 hasConceptScore W4200569724C2777769504 @default.
- W4200569724 hasConceptScore W4200569724C2780406361 @default.
- W4200569724 hasConceptScore W4200569724C37750225 @default.
- W4200569724 hasConceptScore W4200569724C541523362 @default.
- W4200569724 hasConceptScore W4200569724C65590680 @default.
- W4200569724 hasConceptScore W4200569724C7083945 @default.
- W4200569724 hasConceptScore W4200569724C91914117 @default.
- W4200569724 hasConceptScore W4200569724C97355855 @default.
- W4200569724 hasIssue "6" @default.
- W4200569724 hasLocation W42005697241 @default.
- W4200569724 hasOpenAccess W4200569724 @default.
- W4200569724 hasPrimaryLocation W42005697241 @default.
- W4200569724 hasRelatedWork W1993014595 @default.
- W4200569724 hasRelatedWork W2027027936 @default.
- W4200569724 hasRelatedWork W2028823681 @default.
- W4200569724 hasRelatedWork W2056031470 @default.
- W4200569724 hasRelatedWork W2360337261 @default.
- W4200569724 hasRelatedWork W3045162748 @default.
- W4200569724 hasRelatedWork W3196953329 @default.
- W4200569724 hasRelatedWork W4200569724 @default.
- W4200569724 hasRelatedWork W2461727594 @default.
- W4200569724 hasRelatedWork W2552062459 @default.
- W4200569724 hasVolume "86" @default.
- W4200569724 isParatext "false" @default.
- W4200569724 isRetracted "false" @default.
- W4200569724 workType "article" @default.