Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200571423> ?p ?o ?g. }
- W4200571423 endingPage "6767" @default.
- W4200571423 startingPage "6755" @default.
- W4200571423 abstract "In the Web 2.0 era, governments are facing the challenge of analyzing the emotional tendency of online public opinion during emergencies to regulate people’s emotions more effectively and maintain social stability. When dealing with large-scale short, unordered texts and extracting text features, the existing studies often face the problem of sparse features, ignoring fine-grained negative emotions. Aiming at those drawbacks and inspired by the dependency relationship among Chinese words, an emotion computing algorithm based on a binary tree is designed to assign words with emotional intensity. Then, the paper proposes a CNN-LSTM model for Chinese language sentiment classification to conduct local feature extraction and maintain long-term dependencies. The proposed model is validated using different traditional models and classifiers. The results show that the CNN-LSTM model achieved competitive classification performance. Finally, our approach was applied to practical emergency management problems, exploring the impact of government information release on negative emotion regulation to test its reliability. The experimental results validated that compared with traditional methods, this approach improved the accuracy of sentiment classification and possesses higher classification performance. The empirical analysis demonstrated that the CNN-LSTM method was rapid, effective and feasible and could be more suitable for optimizing emotion regulation policies." @default.
- W4200571423 created "2021-12-31" @default.
- W4200571423 creator A5004355388 @default.
- W4200571423 creator A5017012477 @default.
- W4200571423 creator A5061732331 @default.
- W4200571423 creator A5063928814 @default.
- W4200571423 creator A5090076224 @default.
- W4200571423 date "2022-09-01" @default.
- W4200571423 modified "2023-10-13" @default.
- W4200571423 title "CNN-LSTM neural network model for fine-grained negative emotion computing in emergencies" @default.
- W4200571423 cites W1931941414 @default.
- W4200571423 cites W1975428268 @default.
- W4200571423 cites W1997324897 @default.
- W4200571423 cites W2053661062 @default.
- W4200571423 cites W2331082102 @default.
- W4200571423 cites W2342208113 @default.
- W4200571423 cites W2414154032 @default.
- W4200571423 cites W2514588627 @default.
- W4200571423 cites W2563741043 @default.
- W4200571423 cites W2604539637 @default.
- W4200571423 cites W2734332415 @default.
- W4200571423 cites W2734828814 @default.
- W4200571423 cites W2750872979 @default.
- W4200571423 cites W2759004135 @default.
- W4200571423 cites W2777300693 @default.
- W4200571423 cites W2790250716 @default.
- W4200571423 cites W2886444838 @default.
- W4200571423 cites W2892628276 @default.
- W4200571423 cites W2898968509 @default.
- W4200571423 cites W2917796313 @default.
- W4200571423 cites W2937112374 @default.
- W4200571423 cites W2944614505 @default.
- W4200571423 cites W2951042832 @default.
- W4200571423 cites W2951998989 @default.
- W4200571423 cites W2964370293 @default.
- W4200571423 cites W2996843688 @default.
- W4200571423 cites W3006129156 @default.
- W4200571423 cites W3032634577 @default.
- W4200571423 cites W3033350318 @default.
- W4200571423 cites W3036568251 @default.
- W4200571423 cites W3036810919 @default.
- W4200571423 cites W3043792599 @default.
- W4200571423 cites W3084896318 @default.
- W4200571423 cites W3091074232 @default.
- W4200571423 cites W3135298638 @default.
- W4200571423 cites W3164182830 @default.
- W4200571423 cites W3164642512 @default.
- W4200571423 cites W3186997021 @default.
- W4200571423 doi "https://doi.org/10.1016/j.aej.2021.12.022" @default.
- W4200571423 hasPublicationYear "2022" @default.
- W4200571423 type Work @default.
- W4200571423 citedByCount "9" @default.
- W4200571423 countsByYear W42005714232022 @default.
- W4200571423 countsByYear W42005714232023 @default.
- W4200571423 crossrefType "journal-article" @default.
- W4200571423 hasAuthorship W4200571423A5004355388 @default.
- W4200571423 hasAuthorship W4200571423A5017012477 @default.
- W4200571423 hasAuthorship W4200571423A5061732331 @default.
- W4200571423 hasAuthorship W4200571423A5063928814 @default.
- W4200571423 hasAuthorship W4200571423A5090076224 @default.
- W4200571423 hasBestOaLocation W42005714231 @default.
- W4200571423 hasConcept C119857082 @default.
- W4200571423 hasConcept C121332964 @default.
- W4200571423 hasConcept C12267149 @default.
- W4200571423 hasConcept C124101348 @default.
- W4200571423 hasConcept C138885662 @default.
- W4200571423 hasConcept C144024400 @default.
- W4200571423 hasConcept C154945302 @default.
- W4200571423 hasConcept C163258240 @default.
- W4200571423 hasConcept C2776401178 @default.
- W4200571423 hasConcept C2778137410 @default.
- W4200571423 hasConcept C2779304628 @default.
- W4200571423 hasConcept C36289849 @default.
- W4200571423 hasConcept C41008148 @default.
- W4200571423 hasConcept C41895202 @default.
- W4200571423 hasConcept C43214815 @default.
- W4200571423 hasConcept C52622490 @default.
- W4200571423 hasConcept C62520636 @default.
- W4200571423 hasConcept C66402592 @default.
- W4200571423 hasConcept C66905080 @default.
- W4200571423 hasConcept C75684735 @default.
- W4200571423 hasConcept C81363708 @default.
- W4200571423 hasConceptScore W4200571423C119857082 @default.
- W4200571423 hasConceptScore W4200571423C121332964 @default.
- W4200571423 hasConceptScore W4200571423C12267149 @default.
- W4200571423 hasConceptScore W4200571423C124101348 @default.
- W4200571423 hasConceptScore W4200571423C138885662 @default.
- W4200571423 hasConceptScore W4200571423C144024400 @default.
- W4200571423 hasConceptScore W4200571423C154945302 @default.
- W4200571423 hasConceptScore W4200571423C163258240 @default.
- W4200571423 hasConceptScore W4200571423C2776401178 @default.
- W4200571423 hasConceptScore W4200571423C2778137410 @default.
- W4200571423 hasConceptScore W4200571423C2779304628 @default.
- W4200571423 hasConceptScore W4200571423C36289849 @default.
- W4200571423 hasConceptScore W4200571423C41008148 @default.
- W4200571423 hasConceptScore W4200571423C41895202 @default.
- W4200571423 hasConceptScore W4200571423C43214815 @default.
- W4200571423 hasConceptScore W4200571423C52622490 @default.