Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200578082> ?p ?o ?g. }
- W4200578082 endingPage "594" @default.
- W4200578082 startingPage "574" @default.
- W4200578082 abstract "Purpose Risk management is one of the most influential parts of project management that has a major impact on the success or failure of projects. Due to the increasing use of information technology in all fields and the high failure rate of software development projects, it is essential to predict the risk level of each project effectively before starting. Therefore, the main purpose of this paper is proposing an expert system to infer about the risk of new banking software development project. Design/methodology/approach In this research, the risk of software developing projects is considered from four dimensions including risk of cost deviation, time deviation, quality deviation and scope deviation, which is examined by rough set theory (RST). The most important variables affecting the cost, time, quality and scope of projects are identified as condition attributes and four initial decision systems are constructed. Grey system theory is used to cluster the condition attributes and after data discretizing, eight rule models for each dimension of risk as a decision attribute are extracted using RST. The most validated model for each decision attribute is selected as an inference engine of the expert system, and finally a simple user interface is designed in order to predict the risk level of any new project by inserting the data of project attributes Findings In this paper, a high accuracy expert system is designed based on the combination of the grey clustering method and rough set modeling to predict the risks of each project before starting. Cross-validation of different rule models shows that the best model for determining cost deviation is Manual/Jonson/ORR model, and the most validated models for predicting the risk of time, quality and scope of projects are Entropy/Genetic/ORR, Manual/Genetic/FOR and Entropy/Genetic/ORR models; all of which are more than 90% accurate Research limitations/implications It is essential to gather data of previous cases to design a validated expert system. Since data documentation in the field of software development projects is not complete enough, grey set theory (GST) and RST are combined to improve the validity of the rule model. The proposed expert system can be used for risk assessment of new banking software projects Originality/value The risk assessment of software developing projects based on RST is a new approach in the field of risk management. Furthermore, using the grey clustering for combining the condition attributes is a novel solution for improving the accuracy of the rule models." @default.
- W4200578082 created "2021-12-31" @default.
- W4200578082 creator A5026403801 @default.
- W4200578082 creator A5060353934 @default.
- W4200578082 date "2021-12-03" @default.
- W4200578082 modified "2023-09-30" @default.
- W4200578082 title "Developing a risk assessment model for banking software development projects based on rough-grey set theory" @default.
- W4200578082 cites W1975936454 @default.
- W4200578082 cites W1985531813 @default.
- W4200578082 cites W1993396185 @default.
- W4200578082 cites W2003037801 @default.
- W4200578082 cites W2005992901 @default.
- W4200578082 cites W2016424069 @default.
- W4200578082 cites W2017941679 @default.
- W4200578082 cites W2021419921 @default.
- W4200578082 cites W2026908777 @default.
- W4200578082 cites W2027625938 @default.
- W4200578082 cites W2029467006 @default.
- W4200578082 cites W2039277623 @default.
- W4200578082 cites W2045705089 @default.
- W4200578082 cites W2058150410 @default.
- W4200578082 cites W2059644607 @default.
- W4200578082 cites W2060071340 @default.
- W4200578082 cites W2060359852 @default.
- W4200578082 cites W2071381670 @default.
- W4200578082 cites W2074970796 @default.
- W4200578082 cites W2089156695 @default.
- W4200578082 cites W2109302216 @default.
- W4200578082 cites W2113731792 @default.
- W4200578082 cites W2120032222 @default.
- W4200578082 cites W2154662381 @default.
- W4200578082 cites W2159516377 @default.
- W4200578082 cites W2163542951 @default.
- W4200578082 cites W2185116960 @default.
- W4200578082 cites W220610738 @default.
- W4200578082 cites W2226829922 @default.
- W4200578082 cites W2288844003 @default.
- W4200578082 cites W2483937326 @default.
- W4200578082 cites W2509531222 @default.
- W4200578082 cites W2555933387 @default.
- W4200578082 cites W2565169656 @default.
- W4200578082 cites W2568879219 @default.
- W4200578082 cites W2571743398 @default.
- W4200578082 cites W2581101346 @default.
- W4200578082 cites W2588460665 @default.
- W4200578082 cites W2730979008 @default.
- W4200578082 cites W2737942930 @default.
- W4200578082 cites W2755405380 @default.
- W4200578082 cites W2779554575 @default.
- W4200578082 cites W2803738192 @default.
- W4200578082 cites W2883664278 @default.
- W4200578082 cites W2904203420 @default.
- W4200578082 cites W2921969890 @default.
- W4200578082 cites W2998760004 @default.
- W4200578082 cites W3011022069 @default.
- W4200578082 cites W3012979329 @default.
- W4200578082 cites W3036375084 @default.
- W4200578082 cites W3044227282 @default.
- W4200578082 cites W3150564833 @default.
- W4200578082 cites W4234530303 @default.
- W4200578082 cites W831516024 @default.
- W4200578082 doi "https://doi.org/10.1108/gs-05-2021-0074" @default.
- W4200578082 hasPublicationYear "2021" @default.
- W4200578082 type Work @default.
- W4200578082 citedByCount "6" @default.
- W4200578082 countsByYear W42005780822022 @default.
- W4200578082 countsByYear W42005780822023 @default.
- W4200578082 crossrefType "journal-article" @default.
- W4200578082 hasAuthorship W4200578082A5026403801 @default.
- W4200578082 hasAuthorship W4200578082A5060353934 @default.
- W4200578082 hasConcept C111012933 @default.
- W4200578082 hasConcept C111472728 @default.
- W4200578082 hasConcept C112930515 @default.
- W4200578082 hasConcept C119857082 @default.
- W4200578082 hasConcept C124101348 @default.
- W4200578082 hasConcept C127413603 @default.
- W4200578082 hasConcept C138885662 @default.
- W4200578082 hasConcept C154945302 @default.
- W4200578082 hasConcept C15952604 @default.
- W4200578082 hasConcept C162324750 @default.
- W4200578082 hasConcept C168074093 @default.
- W4200578082 hasConcept C187736073 @default.
- W4200578082 hasConcept C199360897 @default.
- W4200578082 hasConcept C201995342 @default.
- W4200578082 hasConcept C202444582 @default.
- W4200578082 hasConcept C2777904410 @default.
- W4200578082 hasConcept C2778012447 @default.
- W4200578082 hasConcept C2779530757 @default.
- W4200578082 hasConcept C32896092 @default.
- W4200578082 hasConcept C33676613 @default.
- W4200578082 hasConcept C33923547 @default.
- W4200578082 hasConcept C37752577 @default.
- W4200578082 hasConcept C41008148 @default.
- W4200578082 hasConcept C46743427 @default.
- W4200578082 hasConcept C529173508 @default.
- W4200578082 hasConcept C58328972 @default.
- W4200578082 hasConcept C71924100 @default.
- W4200578082 hasConcept C73555534 @default.