Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200579103> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4200579103 abstract "One of the leading cause of death is cancer. Lung cancer is the most common cancer and breast cancer is the second common cancer found in women. Thus sophisticated techniques must be designed to deal with these patients or the data generated from these patients. This system focuses on prediction of breast cancer where it categorizes the tumor as malignant or benign. Specialized machine learning algorithms have been used for creating models like decision trees, logistic regression, random forest, naive Bayes, Support vector machine along with Artificial neural networks which are applied on preprocessed data. Preprocessing of the data was done to check for inadequacies such as missing or null data points, categorical data for variables to contain label value rather than numeric, splitting of data set so as to have training and testing set and feature scaling to put our data set in range. Furthermore, dimensionality reduction methods were used in some datasets to improve the accuracy of the models. Artificial neural networks were used with different optimizers to check for the best performance." @default.
- W4200579103 created "2021-12-31" @default.
- W4200579103 creator A5049890920 @default.
- W4200579103 creator A5056437515 @default.
- W4200579103 creator A5060736947 @default.
- W4200579103 creator A5067460865 @default.
- W4200579103 date "2021-10-08" @default.
- W4200579103 modified "2023-09-27" @default.
- W4200579103 title "Breast Cancer Data Analysis using Machine Learning Approaches" @default.
- W4200579103 cites W2065281378 @default.
- W4200579103 cites W2134262590 @default.
- W4200579103 cites W2486398192 @default.
- W4200579103 cites W2560617851 @default.
- W4200579103 cites W2752134435 @default.
- W4200579103 cites W2779175689 @default.
- W4200579103 cites W2800459751 @default.
- W4200579103 cites W3089677278 @default.
- W4200579103 cites W3153398996 @default.
- W4200579103 doi "https://doi.org/10.1109/apsit52773.2021.9641294" @default.
- W4200579103 hasPublicationYear "2021" @default.
- W4200579103 type Work @default.
- W4200579103 citedByCount "2" @default.
- W4200579103 countsByYear W42005791032022 @default.
- W4200579103 countsByYear W42005791032023 @default.
- W4200579103 crossrefType "proceedings-article" @default.
- W4200579103 hasAuthorship W4200579103A5049890920 @default.
- W4200579103 hasAuthorship W4200579103A5056437515 @default.
- W4200579103 hasAuthorship W4200579103A5060736947 @default.
- W4200579103 hasAuthorship W4200579103A5067460865 @default.
- W4200579103 hasConcept C10551718 @default.
- W4200579103 hasConcept C119857082 @default.
- W4200579103 hasConcept C121608353 @default.
- W4200579103 hasConcept C12267149 @default.
- W4200579103 hasConcept C124101348 @default.
- W4200579103 hasConcept C126322002 @default.
- W4200579103 hasConcept C154945302 @default.
- W4200579103 hasConcept C169258074 @default.
- W4200579103 hasConcept C34736171 @default.
- W4200579103 hasConcept C41008148 @default.
- W4200579103 hasConcept C50644808 @default.
- W4200579103 hasConcept C52001869 @default.
- W4200579103 hasConcept C5274069 @default.
- W4200579103 hasConcept C530470458 @default.
- W4200579103 hasConcept C58489278 @default.
- W4200579103 hasConcept C70518039 @default.
- W4200579103 hasConcept C71924100 @default.
- W4200579103 hasConcept C84525736 @default.
- W4200579103 hasConceptScore W4200579103C10551718 @default.
- W4200579103 hasConceptScore W4200579103C119857082 @default.
- W4200579103 hasConceptScore W4200579103C121608353 @default.
- W4200579103 hasConceptScore W4200579103C12267149 @default.
- W4200579103 hasConceptScore W4200579103C124101348 @default.
- W4200579103 hasConceptScore W4200579103C126322002 @default.
- W4200579103 hasConceptScore W4200579103C154945302 @default.
- W4200579103 hasConceptScore W4200579103C169258074 @default.
- W4200579103 hasConceptScore W4200579103C34736171 @default.
- W4200579103 hasConceptScore W4200579103C41008148 @default.
- W4200579103 hasConceptScore W4200579103C50644808 @default.
- W4200579103 hasConceptScore W4200579103C52001869 @default.
- W4200579103 hasConceptScore W4200579103C5274069 @default.
- W4200579103 hasConceptScore W4200579103C530470458 @default.
- W4200579103 hasConceptScore W4200579103C58489278 @default.
- W4200579103 hasConceptScore W4200579103C70518039 @default.
- W4200579103 hasConceptScore W4200579103C71924100 @default.
- W4200579103 hasConceptScore W4200579103C84525736 @default.
- W4200579103 hasLocation W42005791031 @default.
- W4200579103 hasOpenAccess W4200579103 @default.
- W4200579103 hasPrimaryLocation W42005791031 @default.
- W4200579103 hasRelatedWork W3096082097 @default.
- W4200579103 hasRelatedWork W3127425528 @default.
- W4200579103 hasRelatedWork W3199032340 @default.
- W4200579103 hasRelatedWork W3204641204 @default.
- W4200579103 hasRelatedWork W4200324007 @default.
- W4200579103 hasRelatedWork W4200579103 @default.
- W4200579103 hasRelatedWork W4280583453 @default.
- W4200579103 hasRelatedWork W4285317355 @default.
- W4200579103 hasRelatedWork W4293518027 @default.
- W4200579103 hasRelatedWork W4312632137 @default.
- W4200579103 isParatext "false" @default.
- W4200579103 isRetracted "false" @default.
- W4200579103 workType "article" @default.