Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200583048> ?p ?o ?g. }
- W4200583048 endingPage "649" @default.
- W4200583048 startingPage "637" @default.
- W4200583048 abstract "Synchronously detecting multiple Raman spectral signatures in two-dimensional/three-dimensional (2D/3D) hyperspectral Raman analysis is a daunting challenge. The underlying reasons notwithstanding the enormous volume of the data and also the complexities involved in the end-to-end Raman analytics pipeline: baseline removal, cosmic noise elimination, and extraction of trusted spectral signatures and abundance maps. Elimination of cosmic noise is the bottleneck in the entire Raman analytics pipeline. Unless this issue is addressed, the realization of autonomous Raman analytics is impractical. Here, we present a learner-predictor strategy-based automated hyperspectral Raman analysis framework to rapidly fingerprint the molecular variations in the hyperspectral 2D/3D Raman dataset. We introduce the spectrum angle mapper (SAM) technique to eradicate the cosmic noise from the hyperspectral Raman dataset. The learner-predictor strategy eludes the necessity of human inference, and analytics can be done in autonomous mode. The learner owns the ability to learn; it automatically eliminates the baseline and cosmic noise from the Raman dataset, extracts the predominant spectral signatures, and renders the respective abundance maps. In a nutshell, the learner precisely learned the spectral features space during the hyperspectral Raman analysis. Afterward, the learned spectral features space was translated into a neural network (LNN) model. In the predictor, machine-learned intelligence (LNN) is utilized to predict the alternate batch specimen's abundance maps in real time. The qualitative/quantitative evaluation of abundance maps implicitly lays the foundation for monitoring the offline/inline industrial qualitative/quantitative quality control (QA/QC) process. The present strategy is best suited for 2D/3D/four-dimensional (4D) hyperspectral Raman spectroscopic techniques. The proposed ML framework is intuitive because it obviates human intelligence, sophisticated computational hardware, and solely a personal computer is enough for the end-to-end pipeline." @default.
- W4200583048 created "2021-12-31" @default.
- W4200583048 creator A5004140550 @default.
- W4200583048 creator A5008686425 @default.
- W4200583048 creator A5025379942 @default.
- W4200583048 creator A5040984438 @default.
- W4200583048 creator A5075346071 @default.
- W4200583048 date "2021-12-21" @default.
- W4200583048 modified "2023-10-17" @default.
- W4200583048 title "Automated Hyperspectral 2D/3D Raman Analysis Using the Learner-Predictor Strategy: Machine Learning-Based Inline Raman Data Analytics" @default.
- W4200583048 cites W1935409302 @default.
- W4200583048 cites W2010319424 @default.
- W4200583048 cites W2013036395 @default.
- W4200583048 cites W2021717577 @default.
- W4200583048 cites W2050623533 @default.
- W4200583048 cites W2067251637 @default.
- W4200583048 cites W2073827082 @default.
- W4200583048 cites W2077458217 @default.
- W4200583048 cites W2094295322 @default.
- W4200583048 cites W2118718620 @default.
- W4200583048 cites W2119412403 @default.
- W4200583048 cites W2120408219 @default.
- W4200583048 cites W2157321686 @default.
- W4200583048 cites W2158599626 @default.
- W4200583048 cites W2186147793 @default.
- W4200583048 cites W2222415607 @default.
- W4200583048 cites W2326356377 @default.
- W4200583048 cites W2403618360 @default.
- W4200583048 cites W2511536031 @default.
- W4200583048 cites W2535125805 @default.
- W4200583048 cites W2559568469 @default.
- W4200583048 cites W2569160821 @default.
- W4200583048 cites W2580035316 @default.
- W4200583048 cites W2591646821 @default.
- W4200583048 cites W2606937643 @default.
- W4200583048 cites W2613693812 @default.
- W4200583048 cites W2728290683 @default.
- W4200583048 cites W2733737632 @default.
- W4200583048 cites W2735430829 @default.
- W4200583048 cites W2752532133 @default.
- W4200583048 cites W2805857195 @default.
- W4200583048 cites W2907443719 @default.
- W4200583048 cites W2919115771 @default.
- W4200583048 cites W2975851586 @default.
- W4200583048 cites W2986710144 @default.
- W4200583048 cites W2993157076 @default.
- W4200583048 cites W2994384379 @default.
- W4200583048 cites W3011981873 @default.
- W4200583048 cites W3015681636 @default.
- W4200583048 cites W3044166380 @default.
- W4200583048 cites W3099927926 @default.
- W4200583048 cites W3104939983 @default.
- W4200583048 cites W4249528159 @default.
- W4200583048 doi "https://doi.org/10.1021/acs.analchem.1c01966" @default.
- W4200583048 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34931810" @default.
- W4200583048 hasPublicationYear "2021" @default.
- W4200583048 type Work @default.
- W4200583048 citedByCount "3" @default.
- W4200583048 countsByYear W42005830482022 @default.
- W4200583048 countsByYear W42005830482023 @default.
- W4200583048 crossrefType "journal-article" @default.
- W4200583048 hasAuthorship W4200583048A5004140550 @default.
- W4200583048 hasAuthorship W4200583048A5008686425 @default.
- W4200583048 hasAuthorship W4200583048A5025379942 @default.
- W4200583048 hasAuthorship W4200583048A5040984438 @default.
- W4200583048 hasAuthorship W4200583048A5075346071 @default.
- W4200583048 hasConcept C115961682 @default.
- W4200583048 hasConcept C119857082 @default.
- W4200583048 hasConcept C120665830 @default.
- W4200583048 hasConcept C121332964 @default.
- W4200583048 hasConcept C124101348 @default.
- W4200583048 hasConcept C153180895 @default.
- W4200583048 hasConcept C154945302 @default.
- W4200583048 hasConcept C159078339 @default.
- W4200583048 hasConcept C199360897 @default.
- W4200583048 hasConcept C40003534 @default.
- W4200583048 hasConcept C41008148 @default.
- W4200583048 hasConcept C43521106 @default.
- W4200583048 hasConcept C79158427 @default.
- W4200583048 hasConcept C99498987 @default.
- W4200583048 hasConceptScore W4200583048C115961682 @default.
- W4200583048 hasConceptScore W4200583048C119857082 @default.
- W4200583048 hasConceptScore W4200583048C120665830 @default.
- W4200583048 hasConceptScore W4200583048C121332964 @default.
- W4200583048 hasConceptScore W4200583048C124101348 @default.
- W4200583048 hasConceptScore W4200583048C153180895 @default.
- W4200583048 hasConceptScore W4200583048C154945302 @default.
- W4200583048 hasConceptScore W4200583048C159078339 @default.
- W4200583048 hasConceptScore W4200583048C199360897 @default.
- W4200583048 hasConceptScore W4200583048C40003534 @default.
- W4200583048 hasConceptScore W4200583048C41008148 @default.
- W4200583048 hasConceptScore W4200583048C43521106 @default.
- W4200583048 hasConceptScore W4200583048C79158427 @default.
- W4200583048 hasConceptScore W4200583048C99498987 @default.
- W4200583048 hasIssue "2" @default.
- W4200583048 hasLocation W42005830481 @default.
- W4200583048 hasLocation W42005830482 @default.
- W4200583048 hasOpenAccess W4200583048 @default.