Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200587097> ?p ?o ?g. }
- W4200587097 abstract "ABSTRACT Background Mitral valve prolapse (MVP) is a common valvulopathy, with a subset of MVP patients developing sudden cardiac death or cardiac arrest. Complex ventricular ectopy (ComVE) represents a marker of arrhythmic risk that is associated with myocardial fibrosis and increased mortality in MVP. We hypothesize that an ECG-based machine-learning model can identify MVP with ComVE and/or myocardial fibrosis on cardiac magnetic resonance (CMR) imaging. Methods A deep convolutional neural network (CNN) was trained to detect ComVE using 6,916 12-lead ECGs from 569 MVP patients evaluated at the University of California San Francisco (UCSF) between 2012 and 2020. A separate CNN was also trained to detect late gadolinium enhancement (LGE) using 87 ECGs from MVP patients with contrast CMR. Results : The prevalence of ComVE was 160/569 or 28% (20 patients or 3% had cardiac arrest or sudden cardiac death). The area under the curve (AUC) of the CNN to detect ComVE was 0.81 (95% CI, 0.78-0.84). AUC remained high even after excluding patients with moderate-severe mitral regurgitation (MR) [0.80 (95% CI, 0.77-0.83)], or with bileaflet MVP [0.81 (95% CI, 0.76-0.85)]. The top ECG segments able to discriminate ComVE vs no ComVE were related to ventricular depolarization and repolarization (early-mid ST and QRS fromV1, V3, and III). LGE in the papillary muscles or basal inferolateral wall was present in 21 (24%) of 87 patients with available CMR. The AUC for detection of LGE was 0.75 (95% CI, 0.68-0.82). Conclusions Standard 12-lead ECGs analyzed with machine learning can detect MVP at risk for ventricular arrhythmias and fibrosis and can identify novel ECG correlates of arrhythmic risk regardless of leaflet involvement or mitral regurgitation severity. ECG-based CNNs may help select those MVP patients requiring closer follow-up and/or a CMR." @default.
- W4200587097 created "2021-12-31" @default.
- W4200587097 creator A5001013032 @default.
- W4200587097 creator A5009293717 @default.
- W4200587097 creator A5010989042 @default.
- W4200587097 creator A5014012806 @default.
- W4200587097 creator A5018722923 @default.
- W4200587097 creator A5021035199 @default.
- W4200587097 creator A5028516688 @default.
- W4200587097 creator A5029030609 @default.
- W4200587097 creator A5033547423 @default.
- W4200587097 creator A5041884036 @default.
- W4200587097 creator A5067894969 @default.
- W4200587097 date "2021-12-25" @default.
- W4200587097 modified "2023-10-16" @default.
- W4200587097 title "Identifying Mitral Valve Prolapse at Risk for Ventricular Arrhythmias and Myocardial Fibrosis from 12-lead Electrocardiograms using Deep Learning" @default.
- W4200587097 cites W1767431028 @default.
- W4200587097 cites W1980171293 @default.
- W4200587097 cites W2013980680 @default.
- W4200587097 cites W2020393913 @default.
- W4200587097 cites W2021078855 @default.
- W4200587097 cites W2025126907 @default.
- W4200587097 cites W2094189169 @default.
- W4200587097 cites W2102259200 @default.
- W4200587097 cites W2116451816 @default.
- W4200587097 cites W2132285981 @default.
- W4200587097 cites W2147139075 @default.
- W4200587097 cites W2155046368 @default.
- W4200587097 cites W2155600522 @default.
- W4200587097 cites W2160641761 @default.
- W4200587097 cites W2194775991 @default.
- W4200587097 cites W2230140765 @default.
- W4200587097 cites W2323812521 @default.
- W4200587097 cites W2506647222 @default.
- W4200587097 cites W2513684962 @default.
- W4200587097 cites W2885045328 @default.
- W4200587097 cites W2891096905 @default.
- W4200587097 cites W2891923969 @default.
- W4200587097 cites W2897972502 @default.
- W4200587097 cites W2902644322 @default.
- W4200587097 cites W2914911586 @default.
- W4200587097 cites W2914959420 @default.
- W4200587097 cites W2972255700 @default.
- W4200587097 cites W2996456751 @default.
- W4200587097 cites W3033974569 @default.
- W4200587097 cites W3047063238 @default.
- W4200587097 cites W3110707153 @default.
- W4200587097 cites W3129441909 @default.
- W4200587097 cites W3134205874 @default.
- W4200587097 cites W3188409561 @default.
- W4200587097 doi "https://doi.org/10.1101/2021.12.23.21268341" @default.
- W4200587097 hasPublicationYear "2021" @default.
- W4200587097 type Work @default.
- W4200587097 citedByCount "1" @default.
- W4200587097 countsByYear W42005870972023 @default.
- W4200587097 crossrefType "posted-content" @default.
- W4200587097 hasAuthorship W4200587097A5001013032 @default.
- W4200587097 hasAuthorship W4200587097A5009293717 @default.
- W4200587097 hasAuthorship W4200587097A5010989042 @default.
- W4200587097 hasAuthorship W4200587097A5014012806 @default.
- W4200587097 hasAuthorship W4200587097A5018722923 @default.
- W4200587097 hasAuthorship W4200587097A5021035199 @default.
- W4200587097 hasAuthorship W4200587097A5028516688 @default.
- W4200587097 hasAuthorship W4200587097A5029030609 @default.
- W4200587097 hasAuthorship W4200587097A5033547423 @default.
- W4200587097 hasAuthorship W4200587097A5041884036 @default.
- W4200587097 hasAuthorship W4200587097A5067894969 @default.
- W4200587097 hasBestOaLocation W42005870971 @default.
- W4200587097 hasConcept C111773187 @default.
- W4200587097 hasConcept C126322002 @default.
- W4200587097 hasConcept C126838900 @default.
- W4200587097 hasConcept C143409427 @default.
- W4200587097 hasConcept C164705383 @default.
- W4200587097 hasConcept C2775935837 @default.
- W4200587097 hasConcept C2776008845 @default.
- W4200587097 hasConcept C2777420927 @default.
- W4200587097 hasConcept C2777543888 @default.
- W4200587097 hasConcept C2780559512 @default.
- W4200587097 hasConcept C2781030672 @default.
- W4200587097 hasConcept C2993353509 @default.
- W4200587097 hasConcept C2993373945 @default.
- W4200587097 hasConcept C3018763269 @default.
- W4200587097 hasConcept C71924100 @default.
- W4200587097 hasConceptScore W4200587097C111773187 @default.
- W4200587097 hasConceptScore W4200587097C126322002 @default.
- W4200587097 hasConceptScore W4200587097C126838900 @default.
- W4200587097 hasConceptScore W4200587097C143409427 @default.
- W4200587097 hasConceptScore W4200587097C164705383 @default.
- W4200587097 hasConceptScore W4200587097C2775935837 @default.
- W4200587097 hasConceptScore W4200587097C2776008845 @default.
- W4200587097 hasConceptScore W4200587097C2777420927 @default.
- W4200587097 hasConceptScore W4200587097C2777543888 @default.
- W4200587097 hasConceptScore W4200587097C2780559512 @default.
- W4200587097 hasConceptScore W4200587097C2781030672 @default.
- W4200587097 hasConceptScore W4200587097C2993353509 @default.
- W4200587097 hasConceptScore W4200587097C2993373945 @default.
- W4200587097 hasConceptScore W4200587097C3018763269 @default.
- W4200587097 hasConceptScore W4200587097C71924100 @default.
- W4200587097 hasLocation W42005870971 @default.
- W4200587097 hasOpenAccess W4200587097 @default.