Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200588766> ?p ?o ?g. }
- W4200588766 endingPage "1713" @default.
- W4200588766 startingPage "1713" @default.
- W4200588766 abstract "Accurate forest above-ground biomass (AGB) estimation is important for dynamic monitoring of forest resources and evaluation of forest carbon sequestration capacity. However, it is difficult to depict the forest’s vertical structure and its heterogeneity using optical remote sensing when estimating forest AGB, for the reason that electromagnetic waves cannot penetrate the canopy’s surface to obtain low vegetation information, especially in subtropical and tropical forests with complex layer structure and tree species composition. As an active remote sensing technology, an airborne laser scanner (ALS) can penetrate the canopy surface to obtain three-dimensional structure information related to AGB. This paper takes the Jiepai sub-forest farm and the Gaofeng state-owned forest farm in southern China as the experimental area and explores the optimal features from the ALS point cloud data and AGB inversion model in the subtropical forest with complex tree species composition and structure. Firstly, considering tree canopy structure, terrain features, point cloud structure and density features, 63 point cloud features were extracted. In view of the biomass distribution differences of different tree species, the random forest (RF) method was used to select the optimal features of each tree species. Secondly, four modeling methods were used to establish the AGB estimation models of each tree species and verify their accuracy. The results showed that the features related to tree height had a great impact on forest AGB. The top features of Cunninghamia Lanceolata (Chinese fir) and Eucalyptus are all related to height, Pinus (pine tree) is also related to terrain features and other broadleaved trees are also related to point cloud density features. The accuracy of the stepwise regression model is best with the AGB estimation accuracy of 0.19, 0.76, 0.71 and 0.40, respectively, for the Chinese fir, pine tree, eucalyptus and other broadleaved trees. In conclusion, the proposed linear regression AGB estimation model of each tree species combining different features derived from ALS point cloud data has high applicability, which can provide effective support for more accurate forest AGB and carbon stock inventory and monitoring." @default.
- W4200588766 created "2021-12-31" @default.
- W4200588766 creator A5053557314 @default.
- W4200588766 creator A5079320277 @default.
- W4200588766 date "2021-12-06" @default.
- W4200588766 modified "2023-10-05" @default.
- W4200588766 title "Above-Ground Biomass Estimation of Plantation with Complex Forest Stand Structure Using Multiple Features from Airborne Laser Scanning Point Cloud Data" @default.
- W4200588766 cites W1103385825 @default.
- W4200588766 cites W1526027369 @default.
- W4200588766 cites W1978642993 @default.
- W4200588766 cites W1984464677 @default.
- W4200588766 cites W2002730835 @default.
- W4200588766 cites W2004363051 @default.
- W4200588766 cites W2006641097 @default.
- W4200588766 cites W2009757549 @default.
- W4200588766 cites W2014870776 @default.
- W4200588766 cites W2028901390 @default.
- W4200588766 cites W2053693743 @default.
- W4200588766 cites W2059333296 @default.
- W4200588766 cites W2063335319 @default.
- W4200588766 cites W2067508669 @default.
- W4200588766 cites W2081458895 @default.
- W4200588766 cites W2098630016 @default.
- W4200588766 cites W2126999940 @default.
- W4200588766 cites W2127354426 @default.
- W4200588766 cites W2142795701 @default.
- W4200588766 cites W2148719805 @default.
- W4200588766 cites W2209237188 @default.
- W4200588766 cites W2310204504 @default.
- W4200588766 cites W2394640140 @default.
- W4200588766 cites W2482292354 @default.
- W4200588766 cites W2587282625 @default.
- W4200588766 cites W2608232016 @default.
- W4200588766 cites W2626736357 @default.
- W4200588766 cites W2744949162 @default.
- W4200588766 cites W2763240495 @default.
- W4200588766 cites W2783012544 @default.
- W4200588766 cites W2800775304 @default.
- W4200588766 cites W2803546399 @default.
- W4200588766 cites W2803921148 @default.
- W4200588766 cites W2907738775 @default.
- W4200588766 cites W2913972737 @default.
- W4200588766 cites W2965367078 @default.
- W4200588766 cites W2990882407 @default.
- W4200588766 cites W2993766300 @default.
- W4200588766 cites W2995101791 @default.
- W4200588766 cites W2996321354 @default.
- W4200588766 cites W3001958130 @default.
- W4200588766 cites W3026386751 @default.
- W4200588766 cites W3026566795 @default.
- W4200588766 cites W3080224310 @default.
- W4200588766 cites W3207530016 @default.
- W4200588766 cites W4234698323 @default.
- W4200588766 cites W1969707370 @default.
- W4200588766 doi "https://doi.org/10.3390/f12121713" @default.
- W4200588766 hasPublicationYear "2021" @default.
- W4200588766 type Work @default.
- W4200588766 citedByCount "11" @default.
- W4200588766 countsByYear W42005887662022 @default.
- W4200588766 countsByYear W42005887662023 @default.
- W4200588766 crossrefType "journal-article" @default.
- W4200588766 hasAuthorship W4200588766A5053557314 @default.
- W4200588766 hasAuthorship W4200588766A5079320277 @default.
- W4200588766 hasBestOaLocation W42005887661 @default.
- W4200588766 hasConcept C101000010 @default.
- W4200588766 hasConcept C113174947 @default.
- W4200588766 hasConcept C115540264 @default.
- W4200588766 hasConcept C119857082 @default.
- W4200588766 hasConcept C120665830 @default.
- W4200588766 hasConcept C121332964 @default.
- W4200588766 hasConcept C131979681 @default.
- W4200588766 hasConcept C134306372 @default.
- W4200588766 hasConcept C141349535 @default.
- W4200588766 hasConcept C142724271 @default.
- W4200588766 hasConcept C147103442 @default.
- W4200588766 hasConcept C161840515 @default.
- W4200588766 hasConcept C169258074 @default.
- W4200588766 hasConcept C18903297 @default.
- W4200588766 hasConcept C205649164 @default.
- W4200588766 hasConcept C23519681 @default.
- W4200588766 hasConcept C2776133958 @default.
- W4200588766 hasConcept C2777413377 @default.
- W4200588766 hasConcept C28631016 @default.
- W4200588766 hasConcept C2983469836 @default.
- W4200588766 hasConcept C31972630 @default.
- W4200588766 hasConcept C33923547 @default.
- W4200588766 hasConcept C39432304 @default.
- W4200588766 hasConcept C39807119 @default.
- W4200588766 hasConcept C41008148 @default.
- W4200588766 hasConcept C51399673 @default.
- W4200588766 hasConcept C520434653 @default.
- W4200588766 hasConcept C54286561 @default.
- W4200588766 hasConcept C58640448 @default.
- W4200588766 hasConcept C59822182 @default.
- W4200588766 hasConcept C61782394 @default.
- W4200588766 hasConcept C62649853 @default.
- W4200588766 hasConcept C71924100 @default.
- W4200588766 hasConcept C86803240 @default.