Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200590807> ?p ?o ?g. }
- W4200590807 endingPage "934" @default.
- W4200590807 startingPage "927" @default.
- W4200590807 abstract "A highly efficient implementation of machine learning (ML) framework is developed for assessing the dynamic increase factor (DIF) used in nonlinear static analysis (pushdown). Analysis datasets with a total of 3992 samples consisting of training (70%) and testing (30%) are generated by the Monte Carlo simulation that carried out by Sap2000 program application programming interface (API) link with Python in PyCharm software. The generated datasets are evaluated by the correlation matrix and relative feature importance of features that consist of damping ratio (Zeta) range, period of vertical vibration (Tv), ratio of duration of a column removal to Tv (Tau), ratio of factored moment to yielding moment (MMR) and ratio of factored rotation to yielding rotation (TTR). The current study incorporates implementation of K-nearest neighbors algorithm (KNN), extreme gradient boosting (XGBoost), back-propagation neural network (BPNN), and one-dimensional convolutional neural network (1DCNN). The results confirm the ability of the developed framework to efficiently implement regression analysis for the DIF." @default.
- W4200590807 created "2021-12-31" @default.
- W4200590807 creator A5003275935 @default.
- W4200590807 creator A5045197865 @default.
- W4200590807 creator A5060727253 @default.
- W4200590807 creator A5066731539 @default.
- W4200590807 creator A5066765330 @default.
- W4200590807 creator A5091605932 @default.
- W4200590807 date "2022-02-01" @default.
- W4200590807 modified "2023-10-17" @default.
- W4200590807 title "Machine learning applications for assessment of dynamic progressive collapse of steel moment frames" @default.
- W4200590807 cites W2003756933 @default.
- W4200590807 cites W2007555177 @default.
- W4200590807 cites W2043926598 @default.
- W4200590807 cites W2072992837 @default.
- W4200590807 cites W2094965286 @default.
- W4200590807 cites W2559574367 @default.
- W4200590807 cites W2715180341 @default.
- W4200590807 cites W2729478895 @default.
- W4200590807 cites W2736143754 @default.
- W4200590807 cites W2736983260 @default.
- W4200590807 cites W2775484290 @default.
- W4200590807 cites W2797544503 @default.
- W4200590807 cites W2930890426 @default.
- W4200590807 cites W2934598103 @default.
- W4200590807 cites W2940841169 @default.
- W4200590807 cites W2950691155 @default.
- W4200590807 cites W2973209625 @default.
- W4200590807 cites W2974551902 @default.
- W4200590807 cites W2989993511 @default.
- W4200590807 cites W2996367417 @default.
- W4200590807 cites W2998594833 @default.
- W4200590807 cites W3000585909 @default.
- W4200590807 cites W3000958285 @default.
- W4200590807 cites W3003615870 @default.
- W4200590807 cites W3007771544 @default.
- W4200590807 cites W3015813283 @default.
- W4200590807 cites W3016259738 @default.
- W4200590807 cites W3016407904 @default.
- W4200590807 cites W3019836895 @default.
- W4200590807 cites W3083473556 @default.
- W4200590807 cites W3089246515 @default.
- W4200590807 cites W3092170888 @default.
- W4200590807 cites W3093895805 @default.
- W4200590807 cites W3094511252 @default.
- W4200590807 cites W3100777112 @default.
- W4200590807 cites W3108354540 @default.
- W4200590807 cites W3108703399 @default.
- W4200590807 cites W3120310365 @default.
- W4200590807 cites W3125896078 @default.
- W4200590807 cites W3161111203 @default.
- W4200590807 doi "https://doi.org/10.1016/j.istruc.2021.12.067" @default.
- W4200590807 hasPublicationYear "2022" @default.
- W4200590807 type Work @default.
- W4200590807 citedByCount "5" @default.
- W4200590807 countsByYear W42005908072022 @default.
- W4200590807 countsByYear W42005908072023 @default.
- W4200590807 crossrefType "journal-article" @default.
- W4200590807 hasAuthorship W4200590807A5003275935 @default.
- W4200590807 hasAuthorship W4200590807A5045197865 @default.
- W4200590807 hasAuthorship W4200590807A5060727253 @default.
- W4200590807 hasAuthorship W4200590807A5066731539 @default.
- W4200590807 hasAuthorship W4200590807A5066765330 @default.
- W4200590807 hasAuthorship W4200590807A5091605932 @default.
- W4200590807 hasConcept C105795698 @default.
- W4200590807 hasConcept C111919701 @default.
- W4200590807 hasConcept C11413529 @default.
- W4200590807 hasConcept C121332964 @default.
- W4200590807 hasConcept C154945302 @default.
- W4200590807 hasConcept C179254644 @default.
- W4200590807 hasConcept C19499675 @default.
- W4200590807 hasConcept C33923547 @default.
- W4200590807 hasConcept C41008148 @default.
- W4200590807 hasConcept C50644808 @default.
- W4200590807 hasConcept C519991488 @default.
- W4200590807 hasConcept C74650414 @default.
- W4200590807 hasConcept C81363708 @default.
- W4200590807 hasConceptScore W4200590807C105795698 @default.
- W4200590807 hasConceptScore W4200590807C111919701 @default.
- W4200590807 hasConceptScore W4200590807C11413529 @default.
- W4200590807 hasConceptScore W4200590807C121332964 @default.
- W4200590807 hasConceptScore W4200590807C154945302 @default.
- W4200590807 hasConceptScore W4200590807C179254644 @default.
- W4200590807 hasConceptScore W4200590807C19499675 @default.
- W4200590807 hasConceptScore W4200590807C33923547 @default.
- W4200590807 hasConceptScore W4200590807C41008148 @default.
- W4200590807 hasConceptScore W4200590807C50644808 @default.
- W4200590807 hasConceptScore W4200590807C519991488 @default.
- W4200590807 hasConceptScore W4200590807C74650414 @default.
- W4200590807 hasConceptScore W4200590807C81363708 @default.
- W4200590807 hasFunder F4320321001 @default.
- W4200590807 hasFunder F4320324173 @default.
- W4200590807 hasLocation W42005908071 @default.
- W4200590807 hasOpenAccess W4200590807 @default.
- W4200590807 hasPrimaryLocation W42005908071 @default.
- W4200590807 hasRelatedWork W2327204559 @default.
- W4200590807 hasRelatedWork W2521062615 @default.
- W4200590807 hasRelatedWork W2587671147 @default.