Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200598912> ?p ?o ?g. }
- W4200598912 endingPage "107628" @default.
- W4200598912 startingPage "107628" @default.
- W4200598912 abstract "In this paper, a novel algorithm based on sparse identification, subsampling and co-teaching is developed to mitigate the problems of highly noisy data from sensor measurements in modeling of nonlinear systems. Specifically, sparse identification is combined with subsampling, a method where a fraction of the data set is randomly sampled and used for model identification, as well as co-teaching, a method that mixes noise-free data from first-principles simulations with the noisy measurements to provide a mixed data set that is less corrupted with noise for model training. The proposed method is bench-marked against sparse identification without subsampling as well as subsampling but without co-teaching using two examples, a predator-prey system and a chemical process, both of which are modeled as nonlinear systems of ordinary differential equations. It was shown that the proposed method yields better models in terms of prediction accuracy in the presence of high noise levels." @default.
- W4200598912 created "2021-12-31" @default.
- W4200598912 creator A5002367171 @default.
- W4200598912 creator A5015091824 @default.
- W4200598912 creator A5051694820 @default.
- W4200598912 date "2022-01-01" @default.
- W4200598912 modified "2023-10-10" @default.
- W4200598912 title "Handling noisy data in sparse model identification using subsampling and co-teaching" @default.
- W4200598912 cites W1963846586 @default.
- W4200598912 cites W1965093639 @default.
- W4200598912 cites W1967429206 @default.
- W4200598912 cites W1971544913 @default.
- W4200598912 cites W1972005403 @default.
- W4200598912 cites W1972649461 @default.
- W4200598912 cites W1976709621 @default.
- W4200598912 cites W1978060721 @default.
- W4200598912 cites W1988141348 @default.
- W4200598912 cites W1988202149 @default.
- W4200598912 cites W1992068214 @default.
- W4200598912 cites W1998005582 @default.
- W4200598912 cites W2015418199 @default.
- W4200598912 cites W2026679679 @default.
- W4200598912 cites W2050651297 @default.
- W4200598912 cites W2050860697 @default.
- W4200598912 cites W2053095324 @default.
- W4200598912 cites W2054020900 @default.
- W4200598912 cites W2056558085 @default.
- W4200598912 cites W2061200912 @default.
- W4200598912 cites W2067746767 @default.
- W4200598912 cites W2093575346 @default.
- W4200598912 cites W2097322982 @default.
- W4200598912 cites W2103559027 @default.
- W4200598912 cites W2109883840 @default.
- W4200598912 cites W2123375513 @default.
- W4200598912 cites W2130212796 @default.
- W4200598912 cites W2137258853 @default.
- W4200598912 cites W2141454789 @default.
- W4200598912 cites W2146014298 @default.
- W4200598912 cites W2171800554 @default.
- W4200598912 cites W2239232218 @default.
- W4200598912 cites W2278773995 @default.
- W4200598912 cites W2316947785 @default.
- W4200598912 cites W2525748878 @default.
- W4200598912 cites W2556930732 @default.
- W4200598912 cites W2573798107 @default.
- W4200598912 cites W2588198210 @default.
- W4200598912 cites W2618748913 @default.
- W4200598912 cites W2696437456 @default.
- W4200598912 cites W2740145400 @default.
- W4200598912 cites W2788043262 @default.
- W4200598912 cites W2803477776 @default.
- W4200598912 cites W2883194111 @default.
- W4200598912 cites W2887383111 @default.
- W4200598912 cites W2890431580 @default.
- W4200598912 cites W2891289570 @default.
- W4200598912 cites W2892208363 @default.
- W4200598912 cites W2962957385 @default.
- W4200598912 cites W2963113802 @default.
- W4200598912 cites W2963436565 @default.
- W4200598912 cites W2963739154 @default.
- W4200598912 cites W2964078472 @default.
- W4200598912 cites W2964145209 @default.
- W4200598912 cites W2966377278 @default.
- W4200598912 cites W2976098773 @default.
- W4200598912 cites W2997092692 @default.
- W4200598912 cites W3014869516 @default.
- W4200598912 cites W3022136544 @default.
- W4200598912 cites W3029920297 @default.
- W4200598912 cites W3093161520 @default.
- W4200598912 cites W3094301562 @default.
- W4200598912 cites W3100641539 @default.
- W4200598912 cites W3100769368 @default.
- W4200598912 cites W3102913089 @default.
- W4200598912 cites W3104338246 @default.
- W4200598912 cites W3105090572 @default.
- W4200598912 cites W3107102194 @default.
- W4200598912 cites W3111781461 @default.
- W4200598912 cites W3121015950 @default.
- W4200598912 cites W3133445669 @default.
- W4200598912 cites W3153115384 @default.
- W4200598912 cites W3175918372 @default.
- W4200598912 cites W649382544 @default.
- W4200598912 doi "https://doi.org/10.1016/j.compchemeng.2021.107628" @default.
- W4200598912 hasPublicationYear "2022" @default.
- W4200598912 type Work @default.
- W4200598912 citedByCount "10" @default.
- W4200598912 countsByYear W42005989122022 @default.
- W4200598912 countsByYear W42005989122023 @default.
- W4200598912 crossrefType "journal-article" @default.
- W4200598912 hasAuthorship W4200598912A5002367171 @default.
- W4200598912 hasAuthorship W4200598912A5015091824 @default.
- W4200598912 hasAuthorship W4200598912A5051694820 @default.
- W4200598912 hasBestOaLocation W42005989121 @default.
- W4200598912 hasConcept C111919701 @default.
- W4200598912 hasConcept C11413529 @default.
- W4200598912 hasConcept C115961682 @default.
- W4200598912 hasConcept C116834253 @default.
- W4200598912 hasConcept C119247159 @default.