Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200599405> ?p ?o ?g. }
- W4200599405 endingPage "576" @default.
- W4200599405 startingPage "546" @default.
- W4200599405 abstract "Reasoning about uncertainty is one of the main cornerstones of Knowledge Representation. More recently, combining logic with probability has been of major interest. Rough set methods have been proposed for modeling incompleteness and imprecision based on indiscernibility and its generalizations and there is a large body of work in this direction. More recently, the classical theory has been generalized to include probabilistic rough set methods of which there are also a great variety of proposals. Pragmatic, easily accessible, and easy to use tools for specification and reasoning with this wide variety of methods is lacking. It is the purpose of this paper to fill in that gap where the focus will be on probabilistic rough set methods. A landscape of (probabilistic) rough set reasoning methods and the variety of choices involved in specifying them is surveyed first. While doing this, an abstract generalization of all the considered approaches is derived which subsumes each of the methods. One then shows how, via this generalization, one can specify and reason about any of these methods using ProbLog, a popular and widely used probabilistic logic programming language based on Prolog. The paper also considers new techniques in this context such as the use of probabilistic target sets when defining rough sets and the use of partially specified base relations that are also probabilistic. Additionally, probabilistic approaches using tolerance spaces are proposed. The paper includes a rich set of examples and provides a framework based on a library of generic ProbLog relations that make specification of any of these methods, straightforward, efficient and compact. Complete, ready to run ProbLog code is included in the Appendix for all examples considered." @default.
- W4200599405 created "2021-12-31" @default.
- W4200599405 creator A5007619026 @default.
- W4200599405 creator A5043644928 @default.
- W4200599405 date "2022-05-01" @default.
- W4200599405 modified "2023-10-14" @default.
- W4200599405 title "A landscape and implementation framework for probabilistic rough sets using ProbLog" @default.
- W4200599405 cites W148117830 @default.
- W4200599405 cites W1560749011 @default.
- W4200599405 cites W1574077682 @default.
- W4200599405 cites W1596070007 @default.
- W4200599405 cites W1964677778 @default.
- W4200599405 cites W1969463949 @default.
- W4200599405 cites W1975251650 @default.
- W4200599405 cites W1980861610 @default.
- W4200599405 cites W1997362234 @default.
- W4200599405 cites W2001692054 @default.
- W4200599405 cites W2001917229 @default.
- W4200599405 cites W2003716603 @default.
- W4200599405 cites W2016487173 @default.
- W4200599405 cites W2028095785 @default.
- W4200599405 cites W2049204733 @default.
- W4200599405 cites W2050515685 @default.
- W4200599405 cites W2070813883 @default.
- W4200599405 cites W2151101158 @default.
- W4200599405 cites W2165267798 @default.
- W4200599405 cites W2295266283 @default.
- W4200599405 cites W2555933387 @default.
- W4200599405 cites W2604156327 @default.
- W4200599405 cites W2730386428 @default.
- W4200599405 cites W2994752240 @default.
- W4200599405 cites W3041467534 @default.
- W4200599405 cites W3105758438 @default.
- W4200599405 cites W3111791439 @default.
- W4200599405 cites W811924890 @default.
- W4200599405 doi "https://doi.org/10.1016/j.ins.2021.12.062" @default.
- W4200599405 hasPublicationYear "2022" @default.
- W4200599405 type Work @default.
- W4200599405 citedByCount "0" @default.
- W4200599405 crossrefType "journal-article" @default.
- W4200599405 hasAuthorship W4200599405A5007619026 @default.
- W4200599405 hasAuthorship W4200599405A5043644928 @default.
- W4200599405 hasBestOaLocation W42005994051 @default.
- W4200599405 hasConcept C111012933 @default.
- W4200599405 hasConcept C119857082 @default.
- W4200599405 hasConcept C128828806 @default.
- W4200599405 hasConcept C134306372 @default.
- W4200599405 hasConcept C136197465 @default.
- W4200599405 hasConcept C143017306 @default.
- W4200599405 hasConcept C151730666 @default.
- W4200599405 hasConcept C154945302 @default.
- W4200599405 hasConcept C177148314 @default.
- W4200599405 hasConcept C177264268 @default.
- W4200599405 hasConcept C17744445 @default.
- W4200599405 hasConcept C199360897 @default.
- W4200599405 hasConcept C199539241 @default.
- W4200599405 hasConcept C24404364 @default.
- W4200599405 hasConcept C2776359362 @default.
- W4200599405 hasConcept C2779343474 @default.
- W4200599405 hasConcept C33923547 @default.
- W4200599405 hasConcept C41008148 @default.
- W4200599405 hasConcept C49937458 @default.
- W4200599405 hasConcept C52063229 @default.
- W4200599405 hasConcept C80444323 @default.
- W4200599405 hasConcept C86803240 @default.
- W4200599405 hasConcept C94625758 @default.
- W4200599405 hasConceptScore W4200599405C111012933 @default.
- W4200599405 hasConceptScore W4200599405C119857082 @default.
- W4200599405 hasConceptScore W4200599405C128828806 @default.
- W4200599405 hasConceptScore W4200599405C134306372 @default.
- W4200599405 hasConceptScore W4200599405C136197465 @default.
- W4200599405 hasConceptScore W4200599405C143017306 @default.
- W4200599405 hasConceptScore W4200599405C151730666 @default.
- W4200599405 hasConceptScore W4200599405C154945302 @default.
- W4200599405 hasConceptScore W4200599405C177148314 @default.
- W4200599405 hasConceptScore W4200599405C177264268 @default.
- W4200599405 hasConceptScore W4200599405C17744445 @default.
- W4200599405 hasConceptScore W4200599405C199360897 @default.
- W4200599405 hasConceptScore W4200599405C199539241 @default.
- W4200599405 hasConceptScore W4200599405C24404364 @default.
- W4200599405 hasConceptScore W4200599405C2776359362 @default.
- W4200599405 hasConceptScore W4200599405C2779343474 @default.
- W4200599405 hasConceptScore W4200599405C33923547 @default.
- W4200599405 hasConceptScore W4200599405C41008148 @default.
- W4200599405 hasConceptScore W4200599405C49937458 @default.
- W4200599405 hasConceptScore W4200599405C52063229 @default.
- W4200599405 hasConceptScore W4200599405C80444323 @default.
- W4200599405 hasConceptScore W4200599405C86803240 @default.
- W4200599405 hasConceptScore W4200599405C94625758 @default.
- W4200599405 hasLocation W42005994051 @default.
- W4200599405 hasLocation W42005994052 @default.
- W4200599405 hasOpenAccess W4200599405 @default.
- W4200599405 hasPrimaryLocation W42005994051 @default.
- W4200599405 hasRelatedWork W1996917540 @default.
- W4200599405 hasRelatedWork W2104279947 @default.
- W4200599405 hasRelatedWork W2225666389 @default.
- W4200599405 hasRelatedWork W2400548963 @default.
- W4200599405 hasRelatedWork W2471401686 @default.