Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200602689> ?p ?o ?g. }
- W4200602689 endingPage "1673" @default.
- W4200602689 startingPage "1673" @default.
- W4200602689 abstract "Classical methods for inverse problems are mainly based on regularization theory, in particular those, that are based on optimization of a criterion with two parts: a data-model matching and a regularization term. Different choices for these two terms and a great number of optimization algorithms have been proposed. When these two terms are distance or divergence measures, they can have a Bayesian Maximum A Posteriori (MAP) interpretation where these two terms correspond to the likelihood and prior-probability models, respectively. The Bayesian approach gives more flexibility in choosing these terms and, in particular, the prior term via hierarchical models and hidden variables. However, the Bayesian computations can become very heavy computationally. The machine learning (ML) methods such as classification, clustering, segmentation, and regression, based on neural networks (NN) and particularly convolutional NN, deep NN, physics-informed neural networks, etc. can become helpful to obtain approximate practical solutions to inverse problems. In this tutorial article, particular examples of image denoising, image restoration, and computed-tomography (CT) image reconstruction will illustrate this cooperation between ML and inversion." @default.
- W4200602689 created "2021-12-31" @default.
- W4200602689 creator A5061234480 @default.
- W4200602689 date "2021-12-13" @default.
- W4200602689 modified "2023-10-18" @default.
- W4200602689 title "Regularization, Bayesian Inference, and Machine Learning Methods for Inverse Problems" @default.
- W4200602689 cites W1586661374 @default.
- W4200602689 cites W1971571088 @default.
- W4200602689 cites W1974511160 @default.
- W4200602689 cites W1974618217 @default.
- W4200602689 cites W1978333359 @default.
- W4200602689 cites W1991465698 @default.
- W4200602689 cites W1998399571 @default.
- W4200602689 cites W1999970560 @default.
- W4200602689 cites W2008702331 @default.
- W4200602689 cites W2011181254 @default.
- W4200602689 cites W2024721403 @default.
- W4200602689 cites W2033684422 @default.
- W4200602689 cites W2053321126 @default.
- W4200602689 cites W2057196514 @default.
- W4200602689 cites W2073689164 @default.
- W4200602689 cites W2100767284 @default.
- W4200602689 cites W2103913786 @default.
- W4200602689 cites W2116210891 @default.
- W4200602689 cites W2132023809 @default.
- W4200602689 cites W2142058898 @default.
- W4200602689 cites W2152498207 @default.
- W4200602689 cites W2547786499 @default.
- W4200602689 cites W2608993069 @default.
- W4200602689 cites W2618530766 @default.
- W4200602689 cites W2754443011 @default.
- W4200602689 cites W2778924750 @default.
- W4200602689 cites W2905472194 @default.
- W4200602689 cites W2963031812 @default.
- W4200602689 cites W2981551308 @default.
- W4200602689 cites W2986934761 @default.
- W4200602689 cites W2990050904 @default.
- W4200602689 cites W2999762823 @default.
- W4200602689 cites W3001481715 @default.
- W4200602689 cites W3008618604 @default.
- W4200602689 cites W3014022300 @default.
- W4200602689 cites W3021094251 @default.
- W4200602689 cites W3033227357 @default.
- W4200602689 cites W3046675256 @default.
- W4200602689 cites W3046819731 @default.
- W4200602689 cites W3099831354 @default.
- W4200602689 cites W3101380508 @default.
- W4200602689 cites W3111277482 @default.
- W4200602689 cites W3117331509 @default.
- W4200602689 cites W3123906210 @default.
- W4200602689 cites W3133712109 @default.
- W4200602689 cites W3133902371 @default.
- W4200602689 cites W3152851547 @default.
- W4200602689 cites W3179592584 @default.
- W4200602689 cites W3180330028 @default.
- W4200602689 doi "https://doi.org/10.3390/e23121673" @default.
- W4200602689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34945979" @default.
- W4200602689 hasPublicationYear "2021" @default.
- W4200602689 type Work @default.
- W4200602689 citedByCount "8" @default.
- W4200602689 countsByYear W42006026892022 @default.
- W4200602689 countsByYear W42006026892023 @default.
- W4200602689 crossrefType "journal-article" @default.
- W4200602689 hasAuthorship W4200602689A5061234480 @default.
- W4200602689 hasBestOaLocation W42006026891 @default.
- W4200602689 hasConcept C107673813 @default.
- W4200602689 hasConcept C11413529 @default.
- W4200602689 hasConcept C119857082 @default.
- W4200602689 hasConcept C134306372 @default.
- W4200602689 hasConcept C135252773 @default.
- W4200602689 hasConcept C153180895 @default.
- W4200602689 hasConcept C154945302 @default.
- W4200602689 hasConcept C2776135515 @default.
- W4200602689 hasConcept C2776214188 @default.
- W4200602689 hasConcept C33923547 @default.
- W4200602689 hasConcept C41008148 @default.
- W4200602689 hasConcept C73555534 @default.
- W4200602689 hasConcept C81363708 @default.
- W4200602689 hasConceptScore W4200602689C107673813 @default.
- W4200602689 hasConceptScore W4200602689C11413529 @default.
- W4200602689 hasConceptScore W4200602689C119857082 @default.
- W4200602689 hasConceptScore W4200602689C134306372 @default.
- W4200602689 hasConceptScore W4200602689C135252773 @default.
- W4200602689 hasConceptScore W4200602689C153180895 @default.
- W4200602689 hasConceptScore W4200602689C154945302 @default.
- W4200602689 hasConceptScore W4200602689C2776135515 @default.
- W4200602689 hasConceptScore W4200602689C2776214188 @default.
- W4200602689 hasConceptScore W4200602689C33923547 @default.
- W4200602689 hasConceptScore W4200602689C41008148 @default.
- W4200602689 hasConceptScore W4200602689C73555534 @default.
- W4200602689 hasConceptScore W4200602689C81363708 @default.
- W4200602689 hasIssue "12" @default.
- W4200602689 hasLocation W42006026891 @default.
- W4200602689 hasLocation W42006026892 @default.
- W4200602689 hasLocation W42006026893 @default.
- W4200602689 hasLocation W42006026894 @default.
- W4200602689 hasLocation W42006026895 @default.
- W4200602689 hasLocation W42006026896 @default.