Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200603820> ?p ?o ?g. }
- W4200603820 endingPage "2216.e3" @default.
- W4200603820 startingPage "2204" @default.
- W4200603820 abstract "Purpose To develop a machine learning algorithm to predict total charges after ambulatory hip arthroscopy and create a risk-adjusted payment model based on patient comorbidities. Methods A retrospective review of the New York State Ambulatory Surgery and Services database was performed to identify patients who underwent elective hip arthroscopy between 2015 and 2016. Features included in initial models consisted of patient characteristics, medical comorbidities, and procedure-specific variables. Models were generated to predict total charges using 5 algorithms. Model performance was assessed by the root-mean-square error, root-mean-square logarithmic error, and coefficient of determination. Global variable importance and partial dependence curves were constructed to show the impact of each input feature on total charges. For performance benchmarking, the best candidate model was compared with a multivariate linear regression using the same input features. Results A total of 5,121 patients were included. The median cost after hip arthroscopy was $19,720 (interquartile range, $12,399-$26,439). The gradient-boosted ensemble model showed the best performance (root-mean-square error, $3,800 [95% confidence interval, $3,700-$3,900]; logarithmic root-mean-square error, 0.249 [95% confidence interval, 0.24-0.26]; R2 = 0.73). Major cost drivers included total hours in facility less than 12 or more than 15, longer procedure time, performance of a labral repair, age younger than 30 years, Elixhauser Comorbidity Index (ECI) of 1 or greater, African American race, residence in extreme urban and rural areas, and higher household and neighborhood income. Conclusions The gradient-boosted ensemble model effectively predicted total charges after hip arthroscopy. Few modifiable variables were identified other than anesthesia type; nonmodifiable drivers of total charges included duration of care less than 12 hours or more than 15 hours, operating room time more than 100 minutes, age younger than 30 years, performance of a labral repair, and ECI greater than 0. Stratification of patients based on the ECI highlighted the increased financial risk borne by physicians via flat reimbursement schedules given variable degrees of comorbidities. Level of Evidence Level III, retrospective cohort study. To develop a machine learning algorithm to predict total charges after ambulatory hip arthroscopy and create a risk-adjusted payment model based on patient comorbidities. A retrospective review of the New York State Ambulatory Surgery and Services database was performed to identify patients who underwent elective hip arthroscopy between 2015 and 2016. Features included in initial models consisted of patient characteristics, medical comorbidities, and procedure-specific variables. Models were generated to predict total charges using 5 algorithms. Model performance was assessed by the root-mean-square error, root-mean-square logarithmic error, and coefficient of determination. Global variable importance and partial dependence curves were constructed to show the impact of each input feature on total charges. For performance benchmarking, the best candidate model was compared with a multivariate linear regression using the same input features. A total of 5,121 patients were included. The median cost after hip arthroscopy was $19,720 (interquartile range, $12,399-$26,439). The gradient-boosted ensemble model showed the best performance (root-mean-square error, $3,800 [95% confidence interval, $3,700-$3,900]; logarithmic root-mean-square error, 0.249 [95% confidence interval, 0.24-0.26]; R2 = 0.73). Major cost drivers included total hours in facility less than 12 or more than 15, longer procedure time, performance of a labral repair, age younger than 30 years, Elixhauser Comorbidity Index (ECI) of 1 or greater, African American race, residence in extreme urban and rural areas, and higher household and neighborhood income. The gradient-boosted ensemble model effectively predicted total charges after hip arthroscopy. Few modifiable variables were identified other than anesthesia type; nonmodifiable drivers of total charges included duration of care less than 12 hours or more than 15 hours, operating room time more than 100 minutes, age younger than 30 years, performance of a labral repair, and ECI greater than 0. Stratification of patients based on the ECI highlighted the increased financial risk borne by physicians via flat reimbursement schedules given variable degrees of comorbidities." @default.
- W4200603820 created "2021-12-31" @default.
- W4200603820 creator A5029451985 @default.
- W4200603820 creator A5037385720 @default.
- W4200603820 creator A5042401335 @default.
- W4200603820 creator A5056378102 @default.
- W4200603820 creator A5066892142 @default.
- W4200603820 creator A5075756090 @default.
- W4200603820 creator A5084967312 @default.
- W4200603820 creator A5088641088 @default.
- W4200603820 date "2022-07-01" @default.
- W4200603820 modified "2023-09-27" @default.
- W4200603820 title "Duration of Care and Operative Time Are the Primary Drivers of Total Charges After Ambulatory Hip Arthroscopy: A Machine Learning Analysis" @default.
- W4200603820 cites W1974985602 @default.
- W4200603820 cites W2011744517 @default.
- W4200603820 cites W2012820288 @default.
- W4200603820 cites W2037460094 @default.
- W4200603820 cites W2045030413 @default.
- W4200603820 cites W2064186732 @default.
- W4200603820 cites W2065974896 @default.
- W4200603820 cites W2073405308 @default.
- W4200603820 cites W2087046046 @default.
- W4200603820 cites W2098026442 @default.
- W4200603820 cites W2136085913 @default.
- W4200603820 cites W2279922238 @default.
- W4200603820 cites W2558384571 @default.
- W4200603820 cites W2562251009 @default.
- W4200603820 cites W2607507174 @default.
- W4200603820 cites W2736489130 @default.
- W4200603820 cites W2746030716 @default.
- W4200603820 cites W2792452087 @default.
- W4200603820 cites W2891385203 @default.
- W4200603820 cites W2904561288 @default.
- W4200603820 cites W2914645148 @default.
- W4200603820 cites W2917605654 @default.
- W4200603820 cites W2922704543 @default.
- W4200603820 cites W2938199242 @default.
- W4200603820 cites W2950675583 @default.
- W4200603820 cites W2966129221 @default.
- W4200603820 cites W2968116428 @default.
- W4200603820 cites W2971318164 @default.
- W4200603820 cites W2979727374 @default.
- W4200603820 cites W2998718550 @default.
- W4200603820 cites W3001077607 @default.
- W4200603820 cites W3034840568 @default.
- W4200603820 cites W3036557085 @default.
- W4200603820 cites W3050139974 @default.
- W4200603820 cites W3098962981 @default.
- W4200603820 cites W3099805901 @default.
- W4200603820 cites W3108007072 @default.
- W4200603820 cites W3110742246 @default.
- W4200603820 cites W3124584258 @default.
- W4200603820 cites W3135873556 @default.
- W4200603820 cites W3136824354 @default.
- W4200603820 cites W3153753077 @default.
- W4200603820 cites W3155382652 @default.
- W4200603820 doi "https://doi.org/10.1016/j.arthro.2021.12.012" @default.
- W4200603820 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34921955" @default.
- W4200603820 hasPublicationYear "2022" @default.
- W4200603820 type Work @default.
- W4200603820 citedByCount "8" @default.
- W4200603820 countsByYear W42006038202022 @default.
- W4200603820 countsByYear W42006038202023 @default.
- W4200603820 crossrefType "journal-article" @default.
- W4200603820 hasAuthorship W4200603820A5029451985 @default.
- W4200603820 hasAuthorship W4200603820A5037385720 @default.
- W4200603820 hasAuthorship W4200603820A5042401335 @default.
- W4200603820 hasAuthorship W4200603820A5056378102 @default.
- W4200603820 hasAuthorship W4200603820A5066892142 @default.
- W4200603820 hasAuthorship W4200603820A5075756090 @default.
- W4200603820 hasAuthorship W4200603820A5084967312 @default.
- W4200603820 hasAuthorship W4200603820A5088641088 @default.
- W4200603820 hasConcept C105795698 @default.
- W4200603820 hasConcept C119060515 @default.
- W4200603820 hasConcept C139945424 @default.
- W4200603820 hasConcept C141071460 @default.
- W4200603820 hasConcept C1862650 @default.
- W4200603820 hasConcept C2779162959 @default.
- W4200603820 hasConcept C2780485590 @default.
- W4200603820 hasConcept C33923547 @default.
- W4200603820 hasConcept C35785553 @default.
- W4200603820 hasConcept C44249647 @default.
- W4200603820 hasConcept C71924100 @default.
- W4200603820 hasConceptScore W4200603820C105795698 @default.
- W4200603820 hasConceptScore W4200603820C119060515 @default.
- W4200603820 hasConceptScore W4200603820C139945424 @default.
- W4200603820 hasConceptScore W4200603820C141071460 @default.
- W4200603820 hasConceptScore W4200603820C1862650 @default.
- W4200603820 hasConceptScore W4200603820C2779162959 @default.
- W4200603820 hasConceptScore W4200603820C2780485590 @default.
- W4200603820 hasConceptScore W4200603820C33923547 @default.
- W4200603820 hasConceptScore W4200603820C35785553 @default.
- W4200603820 hasConceptScore W4200603820C44249647 @default.
- W4200603820 hasConceptScore W4200603820C71924100 @default.
- W4200603820 hasIssue "7" @default.
- W4200603820 hasLocation W42006038201 @default.
- W4200603820 hasLocation W42006038202 @default.
- W4200603820 hasOpenAccess W4200603820 @default.