Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200605825> ?p ?o ?g. }
- W4200605825 endingPage "103440" @default.
- W4200605825 startingPage "103440" @default.
- W4200605825 abstract "Nowadays, a Magnetic Resonance Image (MRI) scan acts as an efficient tool for efficiently detecting the abnormal tissues present in the brain. It is a complex process for radiologists to diagnose as well as classify the tumor from several images. This paper develops an intelligent method for the accurate detection of brain tumors. Initially, the pre-processing is performed for the input MRI image using the skull stripping and the entropy-based trilateral filtering methods. Further, fuzzy centroid-based region growing is adopted for segmenting the tumor from the image. Once the tumor is segmented, feature extraction is done using four sets of well-performing features like Gray-Level Co-occurrence Matrix (GLCM), Gray Level Run-length Matrix (GLRM), statistical features, and shape features. The optimal feature selection is performed by the hybrid meta-heuristic algorithm termed Group Search-based Multi-Verse optimization (GS-MVO). Finally, the optimally selected features are given to a deep learning algorithm called Deep Belief Network (DBN). The weight is optimized by the same GS-MVO that classifies the final image as normal or abnormal. The simulation outcomes are performed by the standard benchmark database which proves that the developed technique obtains a high classification accuracy. From the analysis, the accuracy of the proposed GS-MVO-DBN is 9.09% superior to SVM, 7.14% superior to NN, 3.45% superior to DBN, 17.65% superior to CNN, 15.38% superior to NN-CNN, and 1.69% superior to COR-CSO-CNN-NN. The proposed GS-MVO-DBN is very effective in accurately detecting brain tumors. In the future, it is encouraged to work on challenging parts of the tumor region like edema, necrosis, and active regions with the help of the fusion process of multi-modality MRI images and effective pre-processing techniques incorporated with innovative deep learning methods." @default.
- W4200605825 created "2021-12-31" @default.
- W4200605825 creator A5002416252 @default.
- W4200605825 creator A5026792251 @default.
- W4200605825 creator A5089077171 @default.
- W4200605825 date "2022-03-01" @default.
- W4200605825 modified "2023-09-25" @default.
- W4200605825 title "An approach for brain tumor detection using optimal feature selection and optimized deep belief network" @default.
- W4200605825 cites W1849730171 @default.
- W4200605825 cites W1963937446 @default.
- W4200605825 cites W2031183907 @default.
- W4200605825 cites W2050576652 @default.
- W4200605825 cites W2054066520 @default.
- W4200605825 cites W2061438946 @default.
- W4200605825 cites W2077913352 @default.
- W4200605825 cites W2087725354 @default.
- W4200605825 cites W2094689349 @default.
- W4200605825 cites W2116200660 @default.
- W4200605825 cites W2125281549 @default.
- W4200605825 cites W2203963179 @default.
- W4200605825 cites W2594020746 @default.
- W4200605825 cites W2783066242 @default.
- W4200605825 cites W2791019495 @default.
- W4200605825 cites W2791822495 @default.
- W4200605825 cites W2799476711 @default.
- W4200605825 cites W2807725079 @default.
- W4200605825 cites W2895109358 @default.
- W4200605825 cites W2895683352 @default.
- W4200605825 cites W2901850952 @default.
- W4200605825 cites W2907475719 @default.
- W4200605825 cites W2911587705 @default.
- W4200605825 cites W2916213758 @default.
- W4200605825 cites W2921384086 @default.
- W4200605825 cites W2946489756 @default.
- W4200605825 cites W2963278716 @default.
- W4200605825 cites W2964049671 @default.
- W4200605825 cites W2970121096 @default.
- W4200605825 cites W2974878728 @default.
- W4200605825 cites W2979223698 @default.
- W4200605825 cites W2980671251 @default.
- W4200605825 cites W2988529604 @default.
- W4200605825 cites W2995003683 @default.
- W4200605825 cites W2997586231 @default.
- W4200605825 cites W2998623084 @default.
- W4200605825 cites W3013549383 @default.
- W4200605825 cites W3016323062 @default.
- W4200605825 cites W3034970121 @default.
- W4200605825 cites W3045609419 @default.
- W4200605825 cites W3049092267 @default.
- W4200605825 cites W3087969957 @default.
- W4200605825 cites W3091222518 @default.
- W4200605825 cites W4249787253 @default.
- W4200605825 doi "https://doi.org/10.1016/j.bspc.2021.103440" @default.
- W4200605825 hasPublicationYear "2022" @default.
- W4200605825 type Work @default.
- W4200605825 citedByCount "12" @default.
- W4200605825 countsByYear W42006058252022 @default.
- W4200605825 countsByYear W42006058252023 @default.
- W4200605825 crossrefType "journal-article" @default.
- W4200605825 hasAuthorship W4200605825A5002416252 @default.
- W4200605825 hasAuthorship W4200605825A5026792251 @default.
- W4200605825 hasAuthorship W4200605825A5089077171 @default.
- W4200605825 hasConcept C108583219 @default.
- W4200605825 hasConcept C12267149 @default.
- W4200605825 hasConcept C146599234 @default.
- W4200605825 hasConcept C148483581 @default.
- W4200605825 hasConcept C153180895 @default.
- W4200605825 hasConcept C154945302 @default.
- W4200605825 hasConcept C41008148 @default.
- W4200605825 hasConcept C52622490 @default.
- W4200605825 hasConcept C89600930 @default.
- W4200605825 hasConcept C97385483 @default.
- W4200605825 hasConceptScore W4200605825C108583219 @default.
- W4200605825 hasConceptScore W4200605825C12267149 @default.
- W4200605825 hasConceptScore W4200605825C146599234 @default.
- W4200605825 hasConceptScore W4200605825C148483581 @default.
- W4200605825 hasConceptScore W4200605825C153180895 @default.
- W4200605825 hasConceptScore W4200605825C154945302 @default.
- W4200605825 hasConceptScore W4200605825C41008148 @default.
- W4200605825 hasConceptScore W4200605825C52622490 @default.
- W4200605825 hasConceptScore W4200605825C89600930 @default.
- W4200605825 hasConceptScore W4200605825C97385483 @default.
- W4200605825 hasLocation W42006058251 @default.
- W4200605825 hasOpenAccess W4200605825 @default.
- W4200605825 hasPrimaryLocation W42006058251 @default.
- W4200605825 hasRelatedWork W2126100045 @default.
- W4200605825 hasRelatedWork W2336974148 @default.
- W4200605825 hasRelatedWork W2381773606 @default.
- W4200605825 hasRelatedWork W2592385986 @default.
- W4200605825 hasRelatedWork W2754350655 @default.
- W4200605825 hasRelatedWork W2773120646 @default.
- W4200605825 hasRelatedWork W2909041182 @default.
- W4200605825 hasRelatedWork W4225360039 @default.
- W4200605825 hasRelatedWork W2187500075 @default.
- W4200605825 hasRelatedWork W2345184372 @default.
- W4200605825 hasVolume "73" @default.
- W4200605825 isParatext "false" @default.
- W4200605825 isRetracted "false" @default.